Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,4 @@
|
|
| 1 |
from transformers import pipeline
|
| 2 |
-
import gradio as gr # Import Gradio for the interface
|
| 3 |
-
|
| 4 |
|
| 5 |
# Load a text-generation model
|
| 6 |
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
|
|
@@ -10,14 +8,15 @@ classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnl
|
|
| 10 |
|
| 11 |
# Customize the bot's knowledge base with predefined responses
|
| 12 |
faq_responses = {
|
| 13 |
-
"study tips": "Here are some study tips: 1) Break your study sessions into 25-minute chunks (Pomodoro Technique). 2) Test yourself frequently. 3) Stay organized using planners or apps like Notion or Todoist."
|
|
|
|
| 14 |
|
| 15 |
# Define the chatbot's response function
|
| 16 |
def faq_chatbot(user_input):
|
| 17 |
# Classify the user input by passing the FAQ keywords as labels
|
| 18 |
classified_user_input = classifier(user_input, candidate_labels=list(faq_responses.keys()))
|
| 19 |
|
| 20 |
-
# Get the highest confidence score label,
|
| 21 |
predicted_label = classified_user_input["labels"][0]
|
| 22 |
confidence_score = classified_user_input["scores"][0]
|
| 23 |
|
|
@@ -27,12 +26,9 @@ def faq_chatbot(user_input):
|
|
| 27 |
# If the classification confidence is high, return the corresponding FAQ response
|
| 28 |
if confidence_score > threshold:
|
| 29 |
return faq_responses[predicted_label]
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
# Check if the user's input matches any FAQ keywords
|
| 33 |
-
# for key, response in faq_responses.items():
|
| 34 |
-
# if key in user_input.lower():
|
| 35 |
-
# return response
|
| 36 |
-
|
| 37 |
-
# If no FAQ match, use the AI model to generate a response
|
| 38 |
conversation = chatbot(user_input, max_length=50, num_return_sequences=1)
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers import pipeline
|
|
|
|
|
|
|
| 2 |
|
| 3 |
# Load a text-generation model
|
| 4 |
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
|
|
|
|
| 8 |
|
| 9 |
# Customize the bot's knowledge base with predefined responses
|
| 10 |
faq_responses = {
|
| 11 |
+
"study tips": "Here are some study tips: 1) Break your study sessions into 25-minute chunks (Pomodoro Technique). 2) Test yourself frequently. 3) Stay organized using planners or apps like Notion or Todoist."
|
| 12 |
+
}
|
| 13 |
|
| 14 |
# Define the chatbot's response function
|
| 15 |
def faq_chatbot(user_input):
|
| 16 |
# Classify the user input by passing the FAQ keywords as labels
|
| 17 |
classified_user_input = classifier(user_input, candidate_labels=list(faq_responses.keys()))
|
| 18 |
|
| 19 |
+
# Get the highest confidence score label, i.e., the most likely FAQ
|
| 20 |
predicted_label = classified_user_input["labels"][0]
|
| 21 |
confidence_score = classified_user_input["scores"][0]
|
| 22 |
|
|
|
|
| 26 |
# If the classification confidence is high, return the corresponding FAQ response
|
| 27 |
if confidence_score > threshold:
|
| 28 |
return faq_responses[predicted_label]
|
| 29 |
+
|
| 30 |
+
# If no FAQ match, use the AI model to generate a response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
conversation = chatbot(user_input, max_length=50, num_return_sequences=1)
|
| 32 |
+
return conversation[0]["generated_text"]
|
| 33 |
+
|
| 34 |
+
|