Spaces:
Paused
Paused
Update app_animatediff.py
Browse files- app_animatediff.py +62 -55
app_animatediff.py
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
-
# app_gradio_img2vid.py
|
| 2 |
import os, io, tempfile
|
| 3 |
-
from typing import Optional
|
| 4 |
from PIL import Image
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
|
| 8 |
from diffusers.utils import export_to_gif
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
|
|
|
| 12 |
|
| 13 |
pipe = None
|
| 14 |
|
|
@@ -16,19 +16,27 @@ def load_pipe(model_id: str, adapter_id: str, cpu_offload: bool):
|
|
| 16 |
global pipe
|
| 17 |
if pipe is not None:
|
| 18 |
return pipe
|
|
|
|
| 19 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
adapter = MotionAdapter.from_pretrained(adapter_id) #
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
#
|
| 32 |
p.scheduler = DDIMScheduler.from_pretrained(
|
| 33 |
model_id,
|
| 34 |
subfolder="scheduler",
|
|
@@ -38,23 +46,22 @@ def load_pipe(model_id: str, adapter_id: str, cpu_offload: bool):
|
|
| 38 |
steps_offset=1
|
| 39 |
) # [attached_file:1]
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
p.vae.enable_slicing()
|
| 43 |
try:
|
| 44 |
-
p.vae.enable_tiling() # [attached_file:1]
|
| 45 |
except Exception:
|
| 46 |
pass
|
| 47 |
|
| 48 |
-
#
|
| 49 |
if cpu_offload and torch.cuda.is_available():
|
| 50 |
-
p.enable_model_cpu_offload() # [attached_file:1]
|
| 51 |
else:
|
| 52 |
p.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 53 |
|
| 54 |
pipe = p
|
| 55 |
return pipe
|
| 56 |
|
| 57 |
-
|
| 58 |
def generate(
|
| 59 |
image: Image.Image,
|
| 60 |
prompt: str,
|
|
@@ -72,9 +79,12 @@ def generate(
|
|
| 72 |
cpu_offload: bool
|
| 73 |
):
|
| 74 |
if image is None or not prompt or not prompt.strip():
|
| 75 |
-
return None, None, "Envie uma imagem e um prompt válidos."
|
|
|
|
| 76 |
p = load_pipe(model_id_ui or MODEL_ID, adapter_id_ui or ADAPTER_ID, cpu_offload)
|
|
|
|
| 77 |
gen = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(int(seed))
|
|
|
|
| 78 |
# img2vid sem IP-Adapter: NÃO passar ip_adapter_image
|
| 79 |
out = p(
|
| 80 |
prompt=prompt,
|
|
@@ -86,64 +96,61 @@ def generate(
|
|
| 86 |
width=int(width) if width else None,
|
| 87 |
height=int(height) if height else None
|
| 88 |
) # [attached_file:1]
|
| 89 |
-
frames = out.frames[0] # lista de PIL [attached_file:1]
|
| 90 |
|
| 91 |
-
#
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
| 95 |
|
|
|
|
| 96 |
mp4_path = None
|
| 97 |
if save_mp4:
|
| 98 |
try:
|
| 99 |
import imageio
|
| 100 |
mp4_path = os.path.join(tempfile.gettempdir(), "animation.mp4")
|
|
|
|
| 101 |
with imageio.get_writer(mp4_path, fps=int(fps), codec="libx264", quality=8) as writer:
|
| 102 |
for fr in frames:
|
| 103 |
-
writer.append_data(imageio.v3.imread(io.BytesIO(fr.tobytes())))
|
| 104 |
except Exception:
|
| 105 |
-
mp4_path = None
|
| 106 |
|
| 107 |
-
return
|
| 108 |
|
| 109 |
def ui():
|
| 110 |
with gr.Blocks(title="AnimateDiff img2vid") as demo:
|
| 111 |
-
gr.Markdown("## AnimateDiff img2vid")
|
| 112 |
with gr.Row():
|
| 113 |
with gr.Column(scale=1):
|
| 114 |
-
image = gr.Image(type="pil", label="Imagem inicial")
|
| 115 |
-
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Descreva estilo/movimento...")
|
| 116 |
-
negative = gr.Textbox(label="Negative prompt", lines=2, value="low quality, worst quality")
|
| 117 |
with gr.Row():
|
| 118 |
-
frames = gr.Slider(8, 64, value=16, step=1, label="Frames")
|
| 119 |
-
steps = gr.Slider(4, 60, value=25, step=1, label="Steps")
|
| 120 |
with gr.Row():
|
| 121 |
-
guidance = gr.Slider(0.5, 15.0, value=7.5, step=0.5, label="Guidance")
|
| 122 |
-
fps = gr.Slider(4, 30, value=8, step=1, label="FPS")
|
| 123 |
with gr.Row():
|
| 124 |
-
seed = gr.Number(value=42, precision=0, label="Seed")
|
| 125 |
-
width = gr.Number(value=None, precision=0, label="Largura (opcional)")
|
| 126 |
-
height = gr.Number(value=None, precision=0, label="Altura (opcional)")
|
| 127 |
with gr.Row():
|
| 128 |
-
model_id_ui = gr.Textbox(value=MODEL_ID, label="Model ID (SD1.5 finetune)")
|
| 129 |
-
adapter_id_ui = gr.Textbox(value=ADAPTER_ID, label="MotionAdapter ID")
|
| 130 |
with gr.Row():
|
| 131 |
-
cpu_offload = gr.Checkbox(value=False, label="CPU offload")
|
| 132 |
-
save_mp4 = gr.Checkbox(value=False, label="Salvar MP4")
|
| 133 |
-
run_btn = gr.Button("Gerar animação")
|
| 134 |
with gr.Column(scale=1):
|
| 135 |
-
video_out = gr.Video(label="Preview (GIF
|
| 136 |
-
file_mp4 = gr.File(label="MP4 (download)", interactive=False)
|
| 137 |
-
status = gr.Textbox(label="Status", interactive=False)
|
| 138 |
|
| 139 |
def _run(*args):
|
| 140 |
-
|
| 141 |
-
temp_gif
|
| 142 |
-
if gif_buf:
|
| 143 |
-
temp_gif = os.path.join(tempfile.gettempdir(), "animation.gif")
|
| 144 |
-
with open(temp_gif, "wb") as f:
|
| 145 |
-
f.write(gif_buf.read())
|
| 146 |
-
return temp_gif, mp4_path, msg
|
| 147 |
|
| 148 |
run_btn.click(
|
| 149 |
_run,
|
|
@@ -154,4 +161,4 @@ def ui():
|
|
| 154 |
|
| 155 |
if __name__ == "__main__":
|
| 156 |
demo = ui()
|
| 157 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, inbrowser=True)
|
|
|
|
|
|
|
| 1 |
import os, io, tempfile
|
| 2 |
+
from typing import Optional
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
|
| 7 |
from diffusers.utils import export_to_gif
|
| 8 |
|
| 9 |
+
# Modelos padrão (ajuste se desejar)
|
| 10 |
+
MODEL_ID = "SG161222/Realistic_Vision_V5.1_noVAE" # SD1.5 finetunado [attached_file:1]
|
| 11 |
+
ADAPTER_ID = "guoyww/animatediff-motion-adapter-v1-5-2" # MotionAdapter p/ SD1.4/1.5 [attached_file:1]
|
| 12 |
|
| 13 |
pipe = None
|
| 14 |
|
|
|
|
| 16 |
global pipe
|
| 17 |
if pipe is not None:
|
| 18 |
return pipe
|
| 19 |
+
# dtype preferível: float16 em CUDA, senão float32
|
| 20 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 21 |
|
| 22 |
+
# MotionAdapter não aceita dtype em from_pretrained nas versões atuais
|
| 23 |
+
adapter = MotionAdapter.from_pretrained(adapter_id) # [attached_file:1]
|
| 24 |
|
| 25 |
+
# Carregar pipeline com dtype
|
| 26 |
+
try:
|
| 27 |
+
p = AnimateDiffPipeline.from_pretrained(
|
| 28 |
+
model_id,
|
| 29 |
+
motion_adapter=adapter,
|
| 30 |
+
dtype=dtype # novas versões aceitam 'dtype' [attached_file:1]
|
| 31 |
+
)
|
| 32 |
+
except TypeError:
|
| 33 |
+
p = AnimateDiffPipeline.from_pretrained(
|
| 34 |
+
model_id,
|
| 35 |
+
motion_adapter=adapter,
|
| 36 |
+
torch_dtype=dtype # fallback para versões que ainda usam torch_dtype [attached_file:1]
|
| 37 |
+
)
|
| 38 |
|
| 39 |
+
# Scheduler recomendado para estabilidade temporal
|
| 40 |
p.scheduler = DDIMScheduler.from_pretrained(
|
| 41 |
model_id,
|
| 42 |
subfolder="scheduler",
|
|
|
|
| 46 |
steps_offset=1
|
| 47 |
) # [attached_file:1]
|
| 48 |
|
| 49 |
+
# Otimizações de VRAM (APIs novas via VAE)
|
| 50 |
+
p.vae.enable_slicing() # [attached_file:1]
|
| 51 |
try:
|
| 52 |
+
p.vae.enable_tiling() # útil em resoluções mais altas [attached_file:1]
|
| 53 |
except Exception:
|
| 54 |
pass
|
| 55 |
|
| 56 |
+
# Alocação de device / offload
|
| 57 |
if cpu_offload and torch.cuda.is_available():
|
| 58 |
+
p.enable_model_cpu_offload() # reduz pico de VRAM [attached_file:1]
|
| 59 |
else:
|
| 60 |
p.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 61 |
|
| 62 |
pipe = p
|
| 63 |
return pipe
|
| 64 |
|
|
|
|
| 65 |
def generate(
|
| 66 |
image: Image.Image,
|
| 67 |
prompt: str,
|
|
|
|
| 79 |
cpu_offload: bool
|
| 80 |
):
|
| 81 |
if image is None or not prompt or not prompt.strip():
|
| 82 |
+
return None, None, "Envie uma imagem e um prompt válidos." # [attached_file:1]
|
| 83 |
+
|
| 84 |
p = load_pipe(model_id_ui or MODEL_ID, adapter_id_ui or ADAPTER_ID, cpu_offload)
|
| 85 |
+
|
| 86 |
gen = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(int(seed))
|
| 87 |
+
|
| 88 |
# img2vid sem IP-Adapter: NÃO passar ip_adapter_image
|
| 89 |
out = p(
|
| 90 |
prompt=prompt,
|
|
|
|
| 96 |
width=int(width) if width else None,
|
| 97 |
height=int(height) if height else None
|
| 98 |
) # [attached_file:1]
|
|
|
|
| 99 |
|
| 100 |
+
frames = out.frames[0] # lista de PILs [attached_file:1]
|
| 101 |
+
|
| 102 |
+
# Salvar GIF em caminho temporário com extensão .gif (evita erro do PIL)
|
| 103 |
+
temp_gif = os.path.join(tempfile.gettempdir(), "animation.gif")
|
| 104 |
+
export_to_gif(frames, temp_gif, fps=int(fps)) # [attached_file:1]
|
| 105 |
|
| 106 |
+
# Opcional: gravar MP4 com imageio-ffmpeg
|
| 107 |
mp4_path = None
|
| 108 |
if save_mp4:
|
| 109 |
try:
|
| 110 |
import imageio
|
| 111 |
mp4_path = os.path.join(tempfile.gettempdir(), "animation.mp4")
|
| 112 |
+
# Converter cada frame PIL para ndarray esperado pelo writer
|
| 113 |
with imageio.get_writer(mp4_path, fps=int(fps), codec="libx264", quality=8) as writer:
|
| 114 |
for fr in frames:
|
| 115 |
+
writer.append_data(imageio.v3.imread(io.BytesIO(fr.convert("RGB").tobytes())))
|
| 116 |
except Exception:
|
| 117 |
+
mp4_path = None # se falhar, apenas não retorna MP4
|
| 118 |
|
| 119 |
+
return temp_gif, mp4_path, f"Gerado {len(frames)} frames @ {fps} fps." # [attached_file:1]
|
| 120 |
|
| 121 |
def ui():
|
| 122 |
with gr.Blocks(title="AnimateDiff img2vid") as demo:
|
| 123 |
+
gr.Markdown("## AnimateDiff img2vid") # [attached_file:1]
|
| 124 |
with gr.Row():
|
| 125 |
with gr.Column(scale=1):
|
| 126 |
+
image = gr.Image(type="pil", label="Imagem inicial") # [attached_file:1]
|
| 127 |
+
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Descreva estilo/movimento...") # [attached_file:1]
|
| 128 |
+
negative = gr.Textbox(label="Negative prompt", lines=2, value="low quality, worst quality") # [attached_file:1]
|
| 129 |
with gr.Row():
|
| 130 |
+
frames = gr.Slider(8, 64, value=16, step=1, label="Frames") # [attached_file:1]
|
| 131 |
+
steps = gr.Slider(4, 60, value=25, step=1, label="Steps") # [attached_file:1]
|
| 132 |
with gr.Row():
|
| 133 |
+
guidance = gr.Slider(0.5, 15.0, value=7.5, step=0.5, label="Guidance") # [attached_file:1]
|
| 134 |
+
fps = gr.Slider(4, 30, value=8, step=1, label="FPS") # [attached_file:1]
|
| 135 |
with gr.Row():
|
| 136 |
+
seed = gr.Number(value=42, precision=0, label="Seed") # [attached_file:1]
|
| 137 |
+
width = gr.Number(value=None, precision=0, label="Largura (opcional)") # [attached_file:1]
|
| 138 |
+
height = gr.Number(value=None, precision=0, label="Altura (opcional)") # [attached_file:1]
|
| 139 |
with gr.Row():
|
| 140 |
+
model_id_ui = gr.Textbox(value=MODEL_ID, label="Model ID (SD1.5 finetune)") # [attached_file:1]
|
| 141 |
+
adapter_id_ui = gr.Textbox(value=ADAPTER_ID, label="MotionAdapter ID") # [attached_file:1]
|
| 142 |
with gr.Row():
|
| 143 |
+
cpu_offload = gr.Checkbox(value=False, label="CPU offload") # [attached_file:1]
|
| 144 |
+
save_mp4 = gr.Checkbox(value=False, label="Salvar MP4") # [attached_file:1]
|
| 145 |
+
run_btn = gr.Button("Gerar animação") # [attached_file:1]
|
| 146 |
with gr.Column(scale=1):
|
| 147 |
+
video_out = gr.Video(label="Preview (GIF)") # [attached_file:1]
|
| 148 |
+
file_mp4 = gr.File(label="MP4 (download)", interactive=False) # [attached_file:1]
|
| 149 |
+
status = gr.Textbox(label="Status", interactive=False) # [attached_file:1]
|
| 150 |
|
| 151 |
def _run(*args):
|
| 152 |
+
temp_gif, mp4_path, msg = generate(*args)
|
| 153 |
+
return temp_gif, mp4_path, msg # [attached_file:1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
run_btn.click(
|
| 156 |
_run,
|
|
|
|
| 161 |
|
| 162 |
if __name__ == "__main__":
|
| 163 |
demo = ui()
|
| 164 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, inbrowser=True) # [attached_file:1]
|