carlex3321 commited on
Commit
aa94641
·
verified ·
1 Parent(s): 21002a1

Upload pipeline_animatediff_img2video.py

Browse files
Files changed (1) hide show
  1. pipeline_animatediff_img2video.py +985 -0
pipeline_animatediff_img2video.py ADDED
@@ -0,0 +1,985 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
+ #
3
+
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ # Note:
17
+ # This pipeline relies on a "hack" discovered by the community that allows
18
+ # the generation of videos given an input image with AnimateDiff. It works
19
+ # by creating a copy of the image `num_frames` times and progressively adding
20
+ # more noise to the image based on the strength and latent interpolation method.
21
+
22
+ import inspect
23
+ from types import FunctionType
24
+ from typing import Any, Callable, Dict, List, Optional, Union
25
+
26
+ import numpy as np
27
+ import torch
28
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
29
+
30
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
31
+ from diffusers.loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
32
+ from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
33
+ from diffusers.models.lora import adjust_lora_scale_text_encoder
34
+ from diffusers.models.unets.unet_motion_model import MotionAdapter
35
+ from diffusers.pipelines.animatediff.pipeline_output import AnimateDiffPipelineOutput
36
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
37
+ from diffusers.schedulers import (
38
+ DDIMScheduler,
39
+ DPMSolverMultistepScheduler,
40
+ EulerAncestralDiscreteScheduler,
41
+ EulerDiscreteScheduler,
42
+ LMSDiscreteScheduler,
43
+ PNDMScheduler,
44
+ )
45
+ from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
46
+ from diffusers.utils.torch_utils import randn_tensor
47
+
48
+
49
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
50
+
51
+ EXAMPLE_DOC_STRING = """
52
+ Examples:
53
+ ```py
54
+ >>> import torch
55
+ >>> from diffusers import MotionAdapter, DiffusionPipeline, DDIMScheduler
56
+ >>> from diffusers.utils import export_to_gif, load_image
57
+
58
+ >>> model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
59
+ >>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
60
+ >>> pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", motion_adapter=adapter, custom_pipeline="pipeline_animatediff_img2video").to("cuda")
61
+ >>> pipe.scheduler = pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1)
62
+
63
+ >>> image = load_image("snail.png")
64
+ >>> output = pipe(image=image, prompt="A snail moving on the ground", strength=0.8, latent_interpolation_method="slerp")
65
+ >>> frames = output.frames[0]
66
+ >>> export_to_gif(frames, "animation.gif")
67
+ ```
68
+ """
69
+
70
+
71
+ def lerp(
72
+ v0: torch.Tensor,
73
+ v1: torch.Tensor,
74
+ t: Union[float, torch.Tensor],
75
+ ) -> torch.Tensor:
76
+ r"""
77
+ Linear Interpolation between two tensors.
78
+
79
+ Args:
80
+ v0 (`torch.Tensor`): First tensor.
81
+ v1 (`torch.Tensor`): Second tensor.
82
+ t: (`float` or `torch.Tensor`): Interpolation factor.
83
+ """
84
+ t_is_float = False
85
+ input_device = v0.device
86
+ v0 = v0.cpu().numpy()
87
+ v1 = v1.cpu().numpy()
88
+
89
+ if isinstance(t, torch.Tensor):
90
+ t = t.cpu().numpy()
91
+ else:
92
+ t_is_float = True
93
+ t = np.array([t], dtype=v0.dtype)
94
+
95
+ t = t[..., None]
96
+ v0 = v0[None, ...]
97
+ v1 = v1[None, ...]
98
+ v2 = (1 - t) * v0 + t * v1
99
+
100
+ if t_is_float and v0.ndim > 1:
101
+ assert v2.shape[0] == 1
102
+ v2 = np.squeeze(v2, axis=0)
103
+
104
+ v2 = torch.from_numpy(v2).to(input_device)
105
+ return v2
106
+
107
+
108
+ def slerp(
109
+ v0: torch.Tensor,
110
+ v1: torch.Tensor,
111
+ t: Union[float, torch.Tensor],
112
+ DOT_THRESHOLD: float = 0.9995,
113
+ ) -> torch.Tensor:
114
+ r"""
115
+ Spherical Linear Interpolation between two tensors.
116
+
117
+ Args:
118
+ v0 (`torch.Tensor`): First tensor.
119
+ v1 (`torch.Tensor`): Second tensor.
120
+ t: (`float` or `torch.Tensor`): Interpolation factor.
121
+ DOT_THRESHOLD (`float`):
122
+ Dot product threshold exceeding which linear interpolation will be used
123
+ because input tensors are close to parallel.
124
+ """
125
+ t_is_float = False
126
+ input_device = v0.device
127
+ v0 = v0.cpu().numpy()
128
+ v1 = v1.cpu().numpy()
129
+
130
+ if isinstance(t, torch.Tensor):
131
+ t = t.cpu().numpy()
132
+ else:
133
+ t_is_float = True
134
+ t = np.array([t], dtype=v0.dtype)
135
+
136
+ dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
137
+
138
+ if np.abs(dot) > DOT_THRESHOLD:
139
+ # v0 and v1 are close to parallel, so use linear interpolation instead
140
+ v2 = lerp(v0, v1, t)
141
+ else:
142
+ theta_0 = np.arccos(dot)
143
+ sin_theta_0 = np.sin(theta_0)
144
+ theta_t = theta_0 * t
145
+ sin_theta_t = np.sin(theta_t)
146
+ s0 = np.sin(theta_0 - theta_t) / sin_theta_0
147
+ s1 = sin_theta_t / sin_theta_0
148
+ s0 = s0[..., None]
149
+ s1 = s1[..., None]
150
+ v0 = v0[None, ...]
151
+ v1 = v1[None, ...]
152
+ v2 = s0 * v0 + s1 * v1
153
+
154
+ if t_is_float and v0.ndim > 1:
155
+ assert v2.shape[0] == 1
156
+ v2 = np.squeeze(v2, axis=0)
157
+
158
+ v2 = torch.from_numpy(v2).to(input_device)
159
+ return v2
160
+
161
+
162
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid
163
+ def tensor2vid(video: torch.Tensor, processor, output_type="np"):
164
+ batch_size, channels, num_frames, height, width = video.shape
165
+ outputs = []
166
+ for batch_idx in range(batch_size):
167
+ batch_vid = video[batch_idx].permute(1, 0, 2, 3)
168
+ batch_output = processor.postprocess(batch_vid, output_type)
169
+
170
+ outputs.append(batch_output)
171
+
172
+ if output_type == "np":
173
+ outputs = np.stack(outputs)
174
+
175
+ elif output_type == "pt":
176
+ outputs = torch.stack(outputs)
177
+
178
+ elif not output_type == "pil":
179
+ raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
180
+
181
+ return outputs
182
+
183
+
184
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
185
+ def retrieve_latents(
186
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
187
+ ):
188
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
189
+ return encoder_output.latent_dist.sample(generator)
190
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
191
+ return encoder_output.latent_dist.mode()
192
+ elif hasattr(encoder_output, "latents"):
193
+ return encoder_output.latents
194
+ else:
195
+ raise AttributeError("Could not access latents of provided encoder_output")
196
+
197
+
198
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
199
+ def retrieve_timesteps(
200
+ scheduler,
201
+ num_inference_steps: Optional[int] = None,
202
+ device: Optional[Union[str, torch.device]] = None,
203
+ timesteps: Optional[List[int]] = None,
204
+ **kwargs,
205
+ ):
206
+ """
207
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
208
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
209
+
210
+ Args:
211
+ scheduler (`SchedulerMixin`):
212
+ The scheduler to get timesteps from.
213
+ num_inference_steps (`int`):
214
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
215
+ `timesteps` must be `None`.
216
+ device (`str` or `torch.device`, *optional*):
217
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
218
+ timesteps (`List[int]`, *optional*):
219
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
220
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
221
+ must be `None`.
222
+
223
+ Returns:
224
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
225
+ second element is the number of inference steps.
226
+ """
227
+ if timesteps is not None:
228
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
229
+ if not accepts_timesteps:
230
+ raise ValueError(
231
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
232
+ f" timestep schedules. Please check whether you are using the correct scheduler."
233
+ )
234
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
235
+ timesteps = scheduler.timesteps
236
+ num_inference_steps = len(timesteps)
237
+ else:
238
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
239
+ timesteps = scheduler.timesteps
240
+ return timesteps, num_inference_steps
241
+
242
+
243
+ class AnimateDiffImgToVideoPipeline(
244
+ DiffusionPipeline,
245
+ StableDiffusionMixin,
246
+ TextualInversionLoaderMixin,
247
+ IPAdapterMixin,
248
+ StableDiffusionLoraLoaderMixin,
249
+ ):
250
+ r"""
251
+ Pipeline for image-to-video generation.
252
+
253
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
254
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
255
+
256
+ The pipeline also inherits the following loading methods:
257
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
258
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
259
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
260
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
261
+
262
+ Args:
263
+ vae ([`AutoencoderKL`]):
264
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
265
+ text_encoder ([`CLIPTextModel`]):
266
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
267
+ tokenizer (`CLIPTokenizer`):
268
+ A [`~transformers.CLIPTokenizer`] to tokenize text.
269
+ unet ([`UNet2DConditionModel`]):
270
+ A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
271
+ motion_adapter ([`MotionAdapter`]):
272
+ A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
273
+ scheduler ([`SchedulerMixin`]):
274
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
275
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
276
+ """
277
+
278
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
279
+ _optional_components = ["feature_extractor", "image_encoder"]
280
+
281
+ def __init__(
282
+ self,
283
+ vae: AutoencoderKL,
284
+ text_encoder: CLIPTextModel,
285
+ tokenizer: CLIPTokenizer,
286
+ unet: UNet2DConditionModel,
287
+ motion_adapter: MotionAdapter,
288
+ scheduler: Union[
289
+ DDIMScheduler,
290
+ PNDMScheduler,
291
+ LMSDiscreteScheduler,
292
+ EulerDiscreteScheduler,
293
+ EulerAncestralDiscreteScheduler,
294
+ DPMSolverMultistepScheduler,
295
+ ],
296
+ feature_extractor: CLIPImageProcessor = None,
297
+ image_encoder: CLIPVisionModelWithProjection = None,
298
+ ):
299
+ super().__init__()
300
+ unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
301
+
302
+ self.register_modules(
303
+ vae=vae,
304
+ text_encoder=text_encoder,
305
+ tokenizer=tokenizer,
306
+ unet=unet,
307
+ motion_adapter=motion_adapter,
308
+ scheduler=scheduler,
309
+ feature_extractor=feature_extractor,
310
+ image_encoder=image_encoder,
311
+ )
312
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
313
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
314
+
315
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
316
+ def encode_prompt(
317
+ self,
318
+ prompt,
319
+ device,
320
+ num_images_per_prompt,
321
+ do_classifier_free_guidance,
322
+ negative_prompt=None,
323
+ prompt_embeds: Optional[torch.Tensor] = None,
324
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
325
+ lora_scale: Optional[float] = None,
326
+ clip_skip: Optional[int] = None,
327
+ ):
328
+ r"""
329
+ Encodes the prompt into text encoder hidden states.
330
+
331
+ Args:
332
+ prompt (`str` or `List[str]`, *optional*):
333
+ prompt to be encoded
334
+ device: (`torch.device`):
335
+ torch device
336
+ num_images_per_prompt (`int`):
337
+ number of images that should be generated per prompt
338
+ do_classifier_free_guidance (`bool`):
339
+ whether to use classifier free guidance or not
340
+ negative_prompt (`str` or `List[str]`, *optional*):
341
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
342
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
343
+ less than `1`).
344
+ prompt_embeds (`torch.Tensor`, *optional*):
345
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
346
+ provided, text embeddings will be generated from `prompt` input argument.
347
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
348
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
349
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
350
+ argument.
351
+ lora_scale (`float`, *optional*):
352
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
353
+ clip_skip (`int`, *optional*):
354
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
355
+ the output of the pre-final layer will be used for computing the prompt embeddings.
356
+ """
357
+ # set lora scale so that monkey patched LoRA
358
+ # function of text encoder can correctly access it
359
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
360
+ self._lora_scale = lora_scale
361
+
362
+ # dynamically adjust the LoRA scale
363
+ if not USE_PEFT_BACKEND:
364
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
365
+ else:
366
+ scale_lora_layers(self.text_encoder, lora_scale)
367
+
368
+ if prompt is not None and isinstance(prompt, str):
369
+ batch_size = 1
370
+ elif prompt is not None and isinstance(prompt, list):
371
+ batch_size = len(prompt)
372
+ else:
373
+ batch_size = prompt_embeds.shape[0]
374
+
375
+ if prompt_embeds is None:
376
+ # textual inversion: procecss multi-vector tokens if necessary
377
+ if isinstance(self, TextualInversionLoaderMixin):
378
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
379
+
380
+ text_inputs = self.tokenizer(
381
+ prompt,
382
+ padding="max_length",
383
+ max_length=self.tokenizer.model_max_length,
384
+ truncation=True,
385
+ return_tensors="pt",
386
+ )
387
+ text_input_ids = text_inputs.input_ids
388
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
389
+
390
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
391
+ text_input_ids, untruncated_ids
392
+ ):
393
+ removed_text = self.tokenizer.batch_decode(
394
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
395
+ )
396
+ logger.warning(
397
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
398
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
399
+ )
400
+
401
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
402
+ attention_mask = text_inputs.attention_mask.to(device)
403
+ else:
404
+ attention_mask = None
405
+
406
+ if clip_skip is None:
407
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
408
+ prompt_embeds = prompt_embeds[0]
409
+ else:
410
+ prompt_embeds = self.text_encoder(
411
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
412
+ )
413
+ # Access the `hidden_states` first, that contains a tuple of
414
+ # all the hidden states from the encoder layers. Then index into
415
+ # the tuple to access the hidden states from the desired layer.
416
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
417
+ # We also need to apply the final LayerNorm here to not mess with the
418
+ # representations. The `last_hidden_states` that we typically use for
419
+ # obtaining the final prompt representations passes through the LayerNorm
420
+ # layer.
421
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
422
+
423
+ if self.text_encoder is not None:
424
+ prompt_embeds_dtype = self.text_encoder.dtype
425
+ elif self.unet is not None:
426
+ prompt_embeds_dtype = self.unet.dtype
427
+ else:
428
+ prompt_embeds_dtype = prompt_embeds.dtype
429
+
430
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
431
+
432
+ bs_embed, seq_len, _ = prompt_embeds.shape
433
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
434
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
435
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
436
+
437
+ # get unconditional embeddings for classifier free guidance
438
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
439
+ uncond_tokens: List[str]
440
+ if negative_prompt is None:
441
+ uncond_tokens = [""] * batch_size
442
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
443
+ raise TypeError(
444
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
445
+ f" {type(prompt)}."
446
+ )
447
+ elif isinstance(negative_prompt, str):
448
+ uncond_tokens = [negative_prompt]
449
+ elif batch_size != len(negative_prompt):
450
+ raise ValueError(
451
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
452
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
453
+ " the batch size of `prompt`."
454
+ )
455
+ else:
456
+ uncond_tokens = negative_prompt
457
+
458
+ # textual inversion: procecss multi-vector tokens if necessary
459
+ if isinstance(self, TextualInversionLoaderMixin):
460
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
461
+
462
+ max_length = prompt_embeds.shape[1]
463
+ uncond_input = self.tokenizer(
464
+ uncond_tokens,
465
+ padding="max_length",
466
+ max_length=max_length,
467
+ truncation=True,
468
+ return_tensors="pt",
469
+ )
470
+
471
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
472
+ attention_mask = uncond_input.attention_mask.to(device)
473
+ else:
474
+ attention_mask = None
475
+
476
+ negative_prompt_embeds = self.text_encoder(
477
+ uncond_input.input_ids.to(device),
478
+ attention_mask=attention_mask,
479
+ )
480
+ negative_prompt_embeds = negative_prompt_embeds[0]
481
+
482
+ if do_classifier_free_guidance:
483
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
484
+ seq_len = negative_prompt_embeds.shape[1]
485
+
486
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
487
+
488
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
489
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
490
+
491
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
492
+ # Retrieve the original scale by scaling back the LoRA layers
493
+ unscale_lora_layers(self.text_encoder, lora_scale)
494
+
495
+ return prompt_embeds, negative_prompt_embeds
496
+
497
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
498
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
499
+ dtype = next(self.image_encoder.parameters()).dtype
500
+
501
+ if not isinstance(image, torch.Tensor):
502
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
503
+
504
+ image = image.to(device=device, dtype=dtype)
505
+ if output_hidden_states:
506
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
507
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
508
+ uncond_image_enc_hidden_states = self.image_encoder(
509
+ torch.zeros_like(image), output_hidden_states=True
510
+ ).hidden_states[-2]
511
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
512
+ num_images_per_prompt, dim=0
513
+ )
514
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
515
+ else:
516
+ image_embeds = self.image_encoder(image).image_embeds
517
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
518
+ uncond_image_embeds = torch.zeros_like(image_embeds)
519
+
520
+ return image_embeds, uncond_image_embeds
521
+
522
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
523
+ def prepare_ip_adapter_image_embeds(
524
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
525
+ ):
526
+ if ip_adapter_image_embeds is None:
527
+ if not isinstance(ip_adapter_image, list):
528
+ ip_adapter_image = [ip_adapter_image]
529
+
530
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
531
+ raise ValueError(
532
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
533
+ )
534
+
535
+ image_embeds = []
536
+ for single_ip_adapter_image, image_proj_layer in zip(
537
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
538
+ ):
539
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
540
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
541
+ single_ip_adapter_image, device, 1, output_hidden_state
542
+ )
543
+ single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
544
+ single_negative_image_embeds = torch.stack(
545
+ [single_negative_image_embeds] * num_images_per_prompt, dim=0
546
+ )
547
+
548
+ if self.do_classifier_free_guidance:
549
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
550
+ single_image_embeds = single_image_embeds.to(device)
551
+
552
+ image_embeds.append(single_image_embeds)
553
+ else:
554
+ image_embeds = ip_adapter_image_embeds
555
+ return image_embeds
556
+
557
+ # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
558
+ def decode_latents(self, latents):
559
+ latents = 1 / self.vae.config.scaling_factor * latents
560
+
561
+ batch_size, channels, num_frames, height, width = latents.shape
562
+ latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
563
+
564
+ image = self.vae.decode(latents).sample
565
+ video = (
566
+ image[None, :]
567
+ .reshape(
568
+ (
569
+ batch_size,
570
+ num_frames,
571
+ -1,
572
+ )
573
+ + image.shape[2:]
574
+ )
575
+ .permute(0, 2, 1, 3, 4)
576
+ )
577
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
578
+ video = video.float()
579
+ return video
580
+
581
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
582
+ def prepare_extra_step_kwargs(self, generator, eta):
583
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
584
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
585
+ # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
586
+ # and should be between [0, 1]
587
+
588
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
589
+ extra_step_kwargs = {}
590
+ if accepts_eta:
591
+ extra_step_kwargs["eta"] = eta
592
+
593
+ # check if the scheduler accepts generator
594
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
595
+ if accepts_generator:
596
+ extra_step_kwargs["generator"] = generator
597
+ return extra_step_kwargs
598
+
599
+ def check_inputs(
600
+ self,
601
+ prompt,
602
+ height,
603
+ width,
604
+ callback_steps,
605
+ negative_prompt=None,
606
+ prompt_embeds=None,
607
+ negative_prompt_embeds=None,
608
+ callback_on_step_end_tensor_inputs=None,
609
+ latent_interpolation_method=None,
610
+ ):
611
+ if height % 8 != 0 or width % 8 != 0:
612
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
613
+
614
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
615
+ raise ValueError(
616
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
617
+ f" {type(callback_steps)}."
618
+ )
619
+ if callback_on_step_end_tensor_inputs is not None and not all(
620
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
621
+ ):
622
+ raise ValueError(
623
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
624
+ )
625
+
626
+ if prompt is not None and prompt_embeds is not None:
627
+ raise ValueError(
628
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
629
+ " only forward one of the two."
630
+ )
631
+ elif prompt is None and prompt_embeds is None:
632
+ raise ValueError(
633
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
634
+ )
635
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
636
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
637
+
638
+ if negative_prompt is not None and negative_prompt_embeds is not None:
639
+ raise ValueError(
640
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
641
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
642
+ )
643
+
644
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
645
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
646
+ raise ValueError(
647
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
648
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
649
+ f" {negative_prompt_embeds.shape}."
650
+ )
651
+
652
+ if latent_interpolation_method is not None:
653
+ if latent_interpolation_method not in ["lerp", "slerp"] and not isinstance(
654
+ latent_interpolation_method, FunctionType
655
+ ):
656
+ raise ValueError(
657
+ "`latent_interpolation_method` must be one of `lerp`, `slerp` or a Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]"
658
+ )
659
+
660
+ def prepare_latents(
661
+ self,
662
+ image,
663
+ strength,
664
+ batch_size,
665
+ num_channels_latents,
666
+ num_frames,
667
+ height,
668
+ width,
669
+ dtype,
670
+ device,
671
+ generator,
672
+ latents=None,
673
+ latent_interpolation_method="slerp",
674
+ ):
675
+ shape = (
676
+ batch_size,
677
+ num_channels_latents,
678
+ num_frames,
679
+ height // self.vae_scale_factor,
680
+ width // self.vae_scale_factor,
681
+ )
682
+
683
+ if latents is None:
684
+ image = image.to(device=device, dtype=dtype)
685
+
686
+ if image.shape[1] == 4:
687
+ latents = image
688
+ else:
689
+ # make sure the VAE is in float32 mode, as it overflows in float16
690
+ if self.vae.config.force_upcast:
691
+ image = image.float()
692
+ self.vae.to(dtype=torch.float32)
693
+
694
+ if isinstance(generator, list):
695
+ if len(generator) != batch_size:
696
+ raise ValueError(
697
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
698
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
699
+ )
700
+
701
+ init_latents = [
702
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
703
+ for i in range(batch_size)
704
+ ]
705
+ init_latents = torch.cat(init_latents, dim=0)
706
+ else:
707
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
708
+
709
+ if self.vae.config.force_upcast:
710
+ self.vae.to(dtype)
711
+
712
+ init_latents = init_latents.to(dtype)
713
+ init_latents = self.vae.config.scaling_factor * init_latents
714
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
715
+ latents = latents * self.scheduler.init_noise_sigma
716
+
717
+ if latent_interpolation_method == "lerp":
718
+
719
+ def latent_cls(v0, v1, index):
720
+ return lerp(v0, v1, index / num_frames * (1 - strength))
721
+ elif latent_interpolation_method == "slerp":
722
+
723
+ def latent_cls(v0, v1, index):
724
+ return slerp(v0, v1, index / num_frames * (1 - strength))
725
+ else:
726
+ latent_cls = latent_interpolation_method
727
+
728
+ for i in range(num_frames):
729
+ latents[:, :, i, :, :] = latent_cls(latents[:, :, i, :, :], init_latents, i)
730
+ else:
731
+ if shape != latents.shape:
732
+ # [B, C, F, H, W]
733
+ raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}")
734
+ latents = latents.to(device, dtype=dtype)
735
+
736
+ return latents
737
+
738
+ @torch.no_grad()
739
+ def __call__(
740
+ self,
741
+ image: PipelineImageInput,
742
+ prompt: Optional[Union[str, List[str]]] = None,
743
+ height: Optional[int] = None,
744
+ width: Optional[int] = None,
745
+ num_frames: int = 16,
746
+ num_inference_steps: int = 50,
747
+ timesteps: Optional[List[int]] = None,
748
+ guidance_scale: float = 7.5,
749
+ strength: float = 0.8,
750
+ negative_prompt: Optional[Union[str, List[str]]] = None,
751
+ num_videos_per_prompt: Optional[int] = 1,
752
+ eta: float = 0.0,
753
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
754
+ latents: Optional[torch.Tensor] = None,
755
+ prompt_embeds: Optional[torch.Tensor] = None,
756
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
757
+ ip_adapter_image: Optional[PipelineImageInput] = None,
758
+ ip_adapter_image_embeds: Optional[PipelineImageInput] = None,
759
+ output_type: Optional[str] = "pil",
760
+ return_dict: bool = True,
761
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
762
+ callback_steps: Optional[int] = 1,
763
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
764
+ clip_skip: Optional[int] = None,
765
+ latent_interpolation_method: Union[str, Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]] = "slerp",
766
+ ):
767
+ r"""
768
+ The call function to the pipeline for generation.
769
+
770
+ Args:
771
+ image (`PipelineImageInput`):
772
+ The input image to condition the generation on.
773
+ prompt (`str` or `List[str]`, *optional*):
774
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
775
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
776
+ The height in pixels of the generated video.
777
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
778
+ The width in pixels of the generated video.
779
+ num_frames (`int`, *optional*, defaults to 16):
780
+ The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
781
+ amounts to 2 seconds of video.
782
+ num_inference_steps (`int`, *optional*, defaults to 50):
783
+ The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
784
+ expense of slower inference.
785
+ strength (`float`, *optional*, defaults to 0.8):
786
+ Higher strength leads to more differences between original image and generated video.
787
+ guidance_scale (`float`, *optional*, defaults to 7.5):
788
+ A higher guidance scale value encourages the model to generate images closely linked to the text
789
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
790
+ negative_prompt (`str` or `List[str]`, *optional*):
791
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
792
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
793
+ eta (`float`, *optional*, defaults to 0.0):
794
+ Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
795
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
796
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
797
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
798
+ generation deterministic.
799
+ latents (`torch.Tensor`, *optional*):
800
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
801
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
802
+ tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
803
+ `(batch_size, num_channel, num_frames, height, width)`.
804
+ prompt_embeds (`torch.Tensor`, *optional*):
805
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
806
+ provided, text embeddings are generated from the `prompt` input argument.
807
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
808
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
809
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
810
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
811
+ Optional image input to work with IP Adapters.
812
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
813
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
814
+ Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
815
+ if `do_classifier_free_guidance` is set to `True`.
816
+ If not provided, embeddings are computed from the `ip_adapter_image` input argument.
817
+ output_type (`str`, *optional*, defaults to `"pil"`):
818
+ The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or
819
+ `np.array`.
820
+ return_dict (`bool`, *optional*, defaults to `True`):
821
+ Whether or not to return a [`AnimateDiffImgToVideoPipelineOutput`] instead
822
+ of a plain tuple.
823
+ callback (`Callable`, *optional*):
824
+ A function that calls every `callback_steps` steps during inference. The function is called with the
825
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
826
+ callback_steps (`int`, *optional*, defaults to 1):
827
+ The frequency at which the `callback` function is called. If not specified, the callback is called at
828
+ every step.
829
+ cross_attention_kwargs (`dict`, *optional*):
830
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
831
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
832
+ clip_skip (`int`, *optional*):
833
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
834
+ the output of the pre-final layer will be used for computing the prompt embeddings.
835
+ latent_interpolation_method (`str` or `Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]]`, *optional*):
836
+ Must be one of "lerp", "slerp" or a callable that takes in a random noisy latent, image latent and a frame index
837
+ as input and returns an initial latent for sampling.
838
+ Examples:
839
+
840
+ Returns:
841
+ [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
842
+ If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
843
+ returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
844
+ """
845
+ # 0. Default height and width to unet
846
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
847
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
848
+
849
+ num_videos_per_prompt = 1
850
+
851
+ # 1. Check inputs. Raise error if not correct
852
+ self.check_inputs(
853
+ prompt=prompt,
854
+ height=height,
855
+ width=width,
856
+ callback_steps=callback_steps,
857
+ negative_prompt=negative_prompt,
858
+ prompt_embeds=prompt_embeds,
859
+ negative_prompt_embeds=negative_prompt_embeds,
860
+ latent_interpolation_method=latent_interpolation_method,
861
+ )
862
+
863
+ # 2. Define call parameters
864
+ if prompt is not None and isinstance(prompt, str):
865
+ batch_size = 1
866
+ elif prompt is not None and isinstance(prompt, list):
867
+ batch_size = len(prompt)
868
+ else:
869
+ batch_size = prompt_embeds.shape[0]
870
+
871
+ device = self._execution_device
872
+
873
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
874
+ # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
875
+ # corresponds to doing no classifier free guidance.
876
+ do_classifier_free_guidance = guidance_scale > 1.0
877
+
878
+ # 3. Encode input prompt
879
+ text_encoder_lora_scale = (
880
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
881
+ )
882
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
883
+ prompt,
884
+ device,
885
+ num_videos_per_prompt,
886
+ do_classifier_free_guidance,
887
+ negative_prompt,
888
+ prompt_embeds=prompt_embeds,
889
+ negative_prompt_embeds=negative_prompt_embeds,
890
+ lora_scale=text_encoder_lora_scale,
891
+ clip_skip=clip_skip,
892
+ )
893
+
894
+ # For classifier free guidance, we need to do two forward passes.
895
+ # Here we concatenate the unconditional and text embeddings into a single batch
896
+ # to avoid doing two forward passes
897
+ if do_classifier_free_guidance:
898
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
899
+
900
+ if ip_adapter_image is not None:
901
+ image_embeds = self.prepare_ip_adapter_image_embeds(
902
+ ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt
903
+ )
904
+
905
+ # 4. Preprocess image
906
+ image = self.image_processor.preprocess(image, height=height, width=width)
907
+
908
+ # 5. Prepare timesteps
909
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
910
+
911
+ # 6. Prepare latent variables
912
+ num_channels_latents = self.unet.config.in_channels
913
+ latents = self.prepare_latents(
914
+ image=image,
915
+ strength=strength,
916
+ batch_size=batch_size * num_videos_per_prompt,
917
+ num_channels_latents=num_channels_latents,
918
+ num_frames=num_frames,
919
+ height=height,
920
+ width=width,
921
+ dtype=prompt_embeds.dtype,
922
+ device=device,
923
+ generator=generator,
924
+ latents=latents,
925
+ latent_interpolation_method=latent_interpolation_method,
926
+ )
927
+
928
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
929
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
930
+
931
+ # 8. Add image embeds for IP-Adapter
932
+ added_cond_kwargs = (
933
+ {"image_embeds": image_embeds}
934
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
935
+ else None
936
+ )
937
+
938
+ # 9. Denoising loop
939
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
940
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
941
+ for i, t in enumerate(timesteps):
942
+ # expand the latents if we are doing classifier free guidance
943
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
944
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
945
+
946
+ # predict the noise residual
947
+ noise_pred = self.unet(
948
+ latent_model_input,
949
+ t,
950
+ encoder_hidden_states=prompt_embeds,
951
+ cross_attention_kwargs=cross_attention_kwargs,
952
+ added_cond_kwargs=added_cond_kwargs,
953
+ ).sample
954
+
955
+ # perform guidance
956
+ if do_classifier_free_guidance:
957
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
958
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
959
+
960
+ # compute the previous noisy sample x_t -> x_t-1
961
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
962
+
963
+ # call the callback, if provided
964
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
965
+ progress_bar.update()
966
+ if callback is not None and i % callback_steps == 0:
967
+ callback(i, t, latents)
968
+
969
+ if output_type == "latent":
970
+ return AnimateDiffPipelineOutput(frames=latents)
971
+
972
+ # 10. Post-processing
973
+ if output_type == "latent":
974
+ video = latents
975
+ else:
976
+ video_tensor = self.decode_latents(latents)
977
+ video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
978
+
979
+ # 11. Offload all models
980
+ self.maybe_free_model_hooks()
981
+
982
+ if not return_dict:
983
+ return (video,)
984
+
985
+ return AnimateDiffPipelineOutput(frames=video)