Spaces:
Running
Running
admin
commited on
Commit
·
6bbbe9a
1
Parent(s):
7b7e565
merge try
Browse files
app.py
CHANGED
|
@@ -251,102 +251,87 @@ def circular_padding(spec: np.ndarray, end: int):
|
|
| 251 |
|
| 252 |
|
| 253 |
def wav2mel(audio_path: str, width=2, top_db=40):
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
count = total_frames // (width * sr) + 1
|
| 262 |
-
y = circular_padding(y, count * width * sr)
|
| 263 |
-
|
| 264 |
-
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
|
| 265 |
-
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
|
| 266 |
-
dur = librosa.get_duration(y=y, sr=sr)
|
| 267 |
-
total_frames = log_mel_spec.shape[1]
|
| 268 |
-
step = int(width * total_frames / dur)
|
| 269 |
-
count = int(total_frames / step)
|
| 270 |
-
begin = int(0.5 * (total_frames - count * step))
|
| 271 |
-
end = begin + step * count
|
| 272 |
-
for i in range(begin, end, step):
|
| 273 |
-
librosa.display.specshow(log_mel_spec[:, i : i + step])
|
| 274 |
-
plt.axis("off")
|
| 275 |
-
plt.savefig(
|
| 276 |
-
f"{TEMP_DIR}/{i}.jpg",
|
| 277 |
-
bbox_inches="tight",
|
| 278 |
-
pad_inches=0.0,
|
| 279 |
-
)
|
| 280 |
-
plt.close()
|
| 281 |
|
| 282 |
-
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
|
| 286 |
def wav2cqt(audio_path: str, width=2, top_db=40):
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
count = total_frames // (width * sr) + 1
|
| 295 |
-
y = circular_padding(y, count * width * sr)
|
| 296 |
-
|
| 297 |
-
cqt_spec = librosa.cqt(y=y, sr=sr)
|
| 298 |
-
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
|
| 299 |
-
dur = librosa.get_duration(y=y, sr=sr)
|
| 300 |
-
total_frames = log_cqt_spec.shape[1]
|
| 301 |
-
step = int(width * total_frames / dur)
|
| 302 |
-
count = int(total_frames / step)
|
| 303 |
-
begin = int(0.5 * (total_frames - count * step))
|
| 304 |
-
end = begin + step * count
|
| 305 |
-
for i in range(begin, end, step):
|
| 306 |
-
librosa.display.specshow(log_cqt_spec[:, i : i + step])
|
| 307 |
-
plt.axis("off")
|
| 308 |
-
plt.savefig(
|
| 309 |
-
f"{TEMP_DIR}/{i}.jpg",
|
| 310 |
-
bbox_inches="tight",
|
| 311 |
-
pad_inches=0.0,
|
| 312 |
-
)
|
| 313 |
-
plt.close()
|
| 314 |
|
| 315 |
-
|
| 316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
|
| 318 |
|
| 319 |
def wav2chroma(audio_path: str, width=2, top_db=40):
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
count = total_frames // (width * sr) + 1
|
| 328 |
-
y = circular_padding(y, count * width * sr)
|
| 329 |
-
|
| 330 |
-
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
|
| 331 |
-
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
|
| 332 |
-
dur = librosa.get_duration(y=y, sr=sr)
|
| 333 |
-
total_frames = log_chroma_spec.shape[1]
|
| 334 |
-
step = int(width * total_frames / dur)
|
| 335 |
-
count = int(total_frames / step)
|
| 336 |
-
begin = int(0.5 * (total_frames - count * step))
|
| 337 |
-
end = begin + step * count
|
| 338 |
-
for i in range(begin, end, step):
|
| 339 |
-
librosa.display.specshow(log_chroma_spec[:, i : i + step])
|
| 340 |
-
plt.axis("off")
|
| 341 |
-
plt.savefig(
|
| 342 |
-
f"{TEMP_DIR}/{i}.jpg",
|
| 343 |
-
bbox_inches="tight",
|
| 344 |
-
pad_inches=0.0,
|
| 345 |
-
)
|
| 346 |
-
plt.close()
|
| 347 |
|
| 348 |
-
|
| 349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
|
| 352 |
def most_frequent_value(lst: list):
|
|
@@ -366,13 +351,15 @@ def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
|
|
| 366 |
if not wav_path:
|
| 367 |
return None, "Please input an audio!"
|
| 368 |
|
|
|
|
|
|
|
| 369 |
try:
|
| 370 |
model = EvalNet(log_name, len(TRANSLATE)).model
|
|
|
|
|
|
|
| 371 |
except Exception as e:
|
| 372 |
return None, f"{e}"
|
| 373 |
|
| 374 |
-
spec = log_name.split("_")[-3]
|
| 375 |
-
eval("wav2%s" % spec)(wav_path)
|
| 376 |
jpgs = find_files(folder_path, ".jpg")
|
| 377 |
preds = []
|
| 378 |
for jpg in jpgs:
|
|
|
|
| 251 |
|
| 252 |
|
| 253 |
def wav2mel(audio_path: str, width=2, top_db=40):
|
| 254 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
| 255 |
+
non_silents = librosa.effects.split(y, top_db=top_db)
|
| 256 |
+
y = np.concatenate([y[start:end] for start, end in non_silents])
|
| 257 |
+
total_frames = len(y)
|
| 258 |
+
if total_frames % (width * sr) != 0:
|
| 259 |
+
count = total_frames // (width * sr) + 1
|
| 260 |
+
y = circular_padding(y, count * width * sr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
+
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
|
| 263 |
+
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
|
| 264 |
+
dur = librosa.get_duration(y=y, sr=sr)
|
| 265 |
+
total_frames = log_mel_spec.shape[1]
|
| 266 |
+
step = int(width * total_frames / dur)
|
| 267 |
+
count = int(total_frames / step)
|
| 268 |
+
begin = int(0.5 * (total_frames - count * step))
|
| 269 |
+
end = begin + step * count
|
| 270 |
+
for i in range(begin, end, step):
|
| 271 |
+
librosa.display.specshow(log_mel_spec[:, i : i + step])
|
| 272 |
+
plt.axis("off")
|
| 273 |
+
plt.savefig(
|
| 274 |
+
f"{TEMP_DIR}/{i}.jpg",
|
| 275 |
+
bbox_inches="tight",
|
| 276 |
+
pad_inches=0.0,
|
| 277 |
+
)
|
| 278 |
+
plt.close()
|
| 279 |
|
| 280 |
|
| 281 |
def wav2cqt(audio_path: str, width=2, top_db=40):
|
| 282 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
| 283 |
+
non_silents = librosa.effects.split(y, top_db=top_db)
|
| 284 |
+
y = np.concatenate([y[start:end] for start, end in non_silents])
|
| 285 |
+
total_frames = len(y)
|
| 286 |
+
if total_frames % (width * sr) != 0:
|
| 287 |
+
count = total_frames // (width * sr) + 1
|
| 288 |
+
y = circular_padding(y, count * width * sr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
+
cqt_spec = librosa.cqt(y=y, sr=sr)
|
| 291 |
+
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
|
| 292 |
+
dur = librosa.get_duration(y=y, sr=sr)
|
| 293 |
+
total_frames = log_cqt_spec.shape[1]
|
| 294 |
+
step = int(width * total_frames / dur)
|
| 295 |
+
count = int(total_frames / step)
|
| 296 |
+
begin = int(0.5 * (total_frames - count * step))
|
| 297 |
+
end = begin + step * count
|
| 298 |
+
for i in range(begin, end, step):
|
| 299 |
+
librosa.display.specshow(log_cqt_spec[:, i : i + step])
|
| 300 |
+
plt.axis("off")
|
| 301 |
+
plt.savefig(
|
| 302 |
+
f"{TEMP_DIR}/{i}.jpg",
|
| 303 |
+
bbox_inches="tight",
|
| 304 |
+
pad_inches=0.0,
|
| 305 |
+
)
|
| 306 |
+
plt.close()
|
| 307 |
|
| 308 |
|
| 309 |
def wav2chroma(audio_path: str, width=2, top_db=40):
|
| 310 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
| 311 |
+
non_silents = librosa.effects.split(y, top_db=top_db)
|
| 312 |
+
y = np.concatenate([y[start:end] for start, end in non_silents])
|
| 313 |
+
total_frames = len(y)
|
| 314 |
+
if total_frames % (width * sr) != 0:
|
| 315 |
+
count = total_frames // (width * sr) + 1
|
| 316 |
+
y = circular_padding(y, count * width * sr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
|
| 318 |
+
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
|
| 319 |
+
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
|
| 320 |
+
dur = librosa.get_duration(y=y, sr=sr)
|
| 321 |
+
total_frames = log_chroma_spec.shape[1]
|
| 322 |
+
step = int(width * total_frames / dur)
|
| 323 |
+
count = int(total_frames / step)
|
| 324 |
+
begin = int(0.5 * (total_frames - count * step))
|
| 325 |
+
end = begin + step * count
|
| 326 |
+
for i in range(begin, end, step):
|
| 327 |
+
librosa.display.specshow(log_chroma_spec[:, i : i + step])
|
| 328 |
+
plt.axis("off")
|
| 329 |
+
plt.savefig(
|
| 330 |
+
f"{TEMP_DIR}/{i}.jpg",
|
| 331 |
+
bbox_inches="tight",
|
| 332 |
+
pad_inches=0.0,
|
| 333 |
+
)
|
| 334 |
+
plt.close()
|
| 335 |
|
| 336 |
|
| 337 |
def most_frequent_value(lst: list):
|
|
|
|
| 351 |
if not wav_path:
|
| 352 |
return None, "Please input an audio!"
|
| 353 |
|
| 354 |
+
spec = log_name.split("_")[-3]
|
| 355 |
+
os.makedirs(folder_path, exist_ok=True)
|
| 356 |
try:
|
| 357 |
model = EvalNet(log_name, len(TRANSLATE)).model
|
| 358 |
+
eval("wav2%s" % spec)(wav_path)
|
| 359 |
+
|
| 360 |
except Exception as e:
|
| 361 |
return None, f"{e}"
|
| 362 |
|
|
|
|
|
|
|
| 363 |
jpgs = find_files(folder_path, ".jpg")
|
| 364 |
preds = []
|
| 365 |
for jpg in jpgs:
|