Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,593 +3,844 @@ import gradio as gr
|
|
| 3 |
import random
|
| 4 |
import re
|
| 5 |
import nltk
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
from
|
| 9 |
import string
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
# Setup
|
| 13 |
os.environ['NLTK_DATA'] = '/tmp/nltk_data'
|
|
|
|
| 14 |
|
| 15 |
-
def
|
| 16 |
-
"""Download required
|
| 17 |
try:
|
|
|
|
| 18 |
os.makedirs('/tmp/nltk_data', exist_ok=True)
|
| 19 |
nltk.data.path.append('/tmp/nltk_data')
|
| 20 |
|
| 21 |
-
|
| 22 |
-
'stopwords', 'wordnet', 'omw-1.4']
|
| 23 |
|
| 24 |
-
for data in
|
| 25 |
try:
|
| 26 |
nltk.download(data, download_dir='/tmp/nltk_data', quiet=True)
|
| 27 |
-
print(f"Successfully downloaded {data}")
|
| 28 |
except Exception as e:
|
| 29 |
print(f"Failed to download {data}: {e}")
|
| 30 |
-
|
| 31 |
-
print("NLTK
|
| 32 |
|
| 33 |
except Exception as e:
|
| 34 |
-
print(f"
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
class AdvancedAIHumanizer:
|
| 39 |
def __init__(self):
|
|
|
|
| 40 |
self.setup_humanization_patterns()
|
| 41 |
-
self.
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
def setup_humanization_patterns(self):
|
| 44 |
-
"""Setup
|
| 45 |
-
|
| 46 |
-
# AI-flagged
|
| 47 |
-
self.
|
| 48 |
-
|
| 49 |
-
r'\
|
| 50 |
-
r'\
|
| 51 |
-
r'\
|
| 52 |
-
r'\
|
| 53 |
-
r'\
|
| 54 |
-
r'\
|
| 55 |
-
r'\
|
| 56 |
-
r'\
|
| 57 |
-
r'\
|
| 58 |
-
r'\
|
| 59 |
-
r'\
|
| 60 |
-
r'\
|
| 61 |
-
r'\
|
| 62 |
-
r'\
|
| 63 |
-
r'\
|
| 64 |
-
r'\
|
| 65 |
-
r'\
|
| 66 |
-
r'\
|
| 67 |
-
r'\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
}
|
| 69 |
|
| 70 |
-
#
|
| 71 |
-
self.
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
r'\bto summarize\b': ["in conclusion", "finally", "in summary", "overall", "in essence"],
|
| 80 |
-
r'\bin summary\b': ["to conclude", "overall", "finally", "in essence", "ultimately"]
|
| 81 |
-
}
|
| 82 |
|
| 83 |
-
#
|
| 84 |
-
self.
|
| 85 |
-
"
|
| 86 |
-
"
|
| 87 |
-
"
|
| 88 |
]
|
| 89 |
|
| 90 |
-
# Professional contractions
|
| 91 |
-
self.
|
| 92 |
-
r'\bit is\b': "it's",
|
| 93 |
-
r'\
|
| 94 |
-
r'\
|
| 95 |
-
r'\
|
| 96 |
-
r'\bdo not\b': "don't",
|
| 97 |
-
r'\
|
| 98 |
-
r'\
|
| 99 |
-
r'\
|
| 100 |
-
r'\
|
| 101 |
-
r'\bcould not\b': "couldn't"
|
| 102 |
}
|
| 103 |
|
| 104 |
-
def
|
| 105 |
-
"""Load
|
| 106 |
try:
|
| 107 |
-
#
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
except:
|
| 112 |
-
|
| 113 |
-
print("WordNet not available, using limited synonym replacement")
|
| 114 |
|
| 115 |
-
def
|
| 116 |
-
"""
|
| 117 |
-
|
| 118 |
-
|
|
|
|
| 119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
try:
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
synsets = wordnet.synsets(word.lower())
|
| 123 |
-
if
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
suitable_synonyms = [s for s in synonyms if abs(len(s) - len(word)) <= 3]
|
| 137 |
-
if suitable_synonyms:
|
| 138 |
-
return random.choice(suitable_synonyms)
|
| 139 |
-
else:
|
| 140 |
-
return random.choice(synonyms)
|
| 141 |
|
| 142 |
return word
|
| 143 |
|
| 144 |
except:
|
| 145 |
return word
|
| 146 |
|
| 147 |
-
def
|
| 148 |
-
"""
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
replacement_probability = {
|
| 153 |
-
1: 0.3, # Light
|
| 154 |
-
2: 0.5, # Standard
|
| 155 |
-
3: 0.7 # Heavy
|
| 156 |
-
}
|
| 157 |
-
|
| 158 |
-
prob = replacement_probability.get(intensity_level, 0.5)
|
| 159 |
-
|
| 160 |
-
# Apply formal term replacements
|
| 161 |
-
for pattern, replacements in self.formal_replacements.items():
|
| 162 |
-
if re.search(pattern, result, re.IGNORECASE) and random.random() < prob:
|
| 163 |
-
replacement = random.choice(replacements)
|
| 164 |
-
result = re.sub(pattern, replacement, result, flags=re.IGNORECASE)
|
| 165 |
-
|
| 166 |
-
# Apply transition phrase replacements
|
| 167 |
-
for pattern, replacements in self.transition_replacements.items():
|
| 168 |
-
if re.search(pattern, result, re.IGNORECASE) and random.random() < prob:
|
| 169 |
-
replacement = random.choice(replacements)
|
| 170 |
-
result = re.sub(pattern, replacement, result, flags=re.IGNORECASE)
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
varied_sentences = []
|
| 178 |
-
|
| 179 |
-
# Determine variation probability based on intensity
|
| 180 |
-
variation_probability = {
|
| 181 |
-
1: 0.1, # Light
|
| 182 |
-
2: 0.2, # Standard
|
| 183 |
-
3: 0.3 # Heavy
|
| 184 |
-
}
|
| 185 |
-
|
| 186 |
-
prob = variation_probability.get(intensity_level, 0.2)
|
| 187 |
-
|
| 188 |
-
for i, sentence in enumerate(sentences):
|
| 189 |
-
# Occasionally add transitional phrases at the beginning
|
| 190 |
-
if i > 0 and len(sentence.split()) > 6 and random.random() < prob:
|
| 191 |
-
starter = random.choice(self.sentence_starters)
|
| 192 |
-
sentence = sentence[0].lower() + sentence[1:]
|
| 193 |
-
sentence = f"{starter} {sentence}"
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
|
|
|
| 198 |
|
| 199 |
-
#
|
| 200 |
-
if len(sentence.split()) >
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
-
|
| 204 |
|
| 205 |
-
|
|
|
|
| 206 |
|
| 207 |
-
def
|
| 208 |
-
"""
|
| 209 |
-
# Simple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
passive_patterns = [
|
| 211 |
-
(r'(\w+)
|
| 212 |
r'\3 \2 \1'),
|
| 213 |
-
(r'(\w+)
|
| 214 |
-
r'
|
| 215 |
]
|
| 216 |
|
| 217 |
for pattern, replacement in passive_patterns:
|
| 218 |
-
if re.search(pattern, sentence
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
return sentence
|
| 223 |
-
|
| 224 |
-
def restructure_complex_sentence(self, sentence):
|
| 225 |
-
"""Restructure overly complex sentences"""
|
| 226 |
-
# Split long sentences at natural break points
|
| 227 |
-
if ',' in sentence and len(sentence.split()) > 15:
|
| 228 |
-
parts = sentence.split(',', 1)
|
| 229 |
-
if len(parts) == 2:
|
| 230 |
-
first_part = parts[0].strip()
|
| 231 |
-
second_part = parts[1].strip()
|
| 232 |
-
|
| 233 |
-
# Rejoin with different structure
|
| 234 |
-
connectors = ["Additionally", "Furthermore", "Moreover", "Also"]
|
| 235 |
-
connector = random.choice(connectors)
|
| 236 |
-
return f"{first_part}. {connector}, {second_part}"
|
| 237 |
|
| 238 |
return sentence
|
| 239 |
|
| 240 |
-
def
|
| 241 |
-
"""
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
1: 0.2, # Light
|
| 245 |
-
2: 0.3, # Standard
|
| 246 |
-
3: 0.4 # Heavy
|
| 247 |
-
}
|
| 248 |
|
| 249 |
-
|
|
|
|
| 250 |
|
| 251 |
-
for
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
if re.search(pattern, text, re.IGNORECASE) and random.random() < prob:
|
| 253 |
text = re.sub(pattern, contraction, text, flags=re.IGNORECASE)
|
| 254 |
-
|
| 255 |
return text
|
| 256 |
|
| 257 |
-
def enhance_vocabulary_diversity(self, text,
|
| 258 |
-
"""
|
| 259 |
words = word_tokenize(text)
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
# Determine synonym probability based on intensity
|
| 264 |
-
synonym_probability = {
|
| 265 |
-
1: 0.1, # Light
|
| 266 |
-
2: 0.2, # Standard
|
| 267 |
-
3: 0.3 # Heavy
|
| 268 |
-
}
|
| 269 |
|
| 270 |
-
|
|
|
|
| 271 |
|
| 272 |
-
# Track
|
| 273 |
for word in words:
|
| 274 |
if word.isalpha() and len(word) > 4:
|
| 275 |
-
|
| 276 |
|
| 277 |
for word in words:
|
| 278 |
if (word.isalpha() and len(word) > 4 and
|
| 279 |
-
|
|
|
|
| 280 |
random.random() < prob):
|
| 281 |
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
|
|
|
| 286 |
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
-
def
|
| 290 |
-
"""
|
| 291 |
-
|
| 292 |
-
varied_sentences = []
|
| 293 |
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
3: 0.25 # Heavy
|
| 299 |
}
|
| 300 |
|
| 301 |
-
|
| 302 |
|
| 303 |
-
for
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
second_part = ' '.join(words[i+1:])
|
| 315 |
-
sentence = f"{first_part}. {second_part.capitalize()}"
|
| 316 |
-
break
|
| 317 |
-
|
| 318 |
-
# Add subtle emphasis occasionally
|
| 319 |
-
if random.random() < prob:
|
| 320 |
-
sentence = self.add_subtle_emphasis(sentence)
|
| 321 |
|
| 322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
-
def
|
| 327 |
-
"""
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
(r'\bvery effective\b', "highly effective"),
|
| 332 |
-
(r'\bvery useful\b', "particularly useful"),
|
| 333 |
-
(r'\bvery good\b', "excellent"),
|
| 334 |
-
(r'\bvery bad\b', "poor")
|
| 335 |
-
]
|
| 336 |
|
| 337 |
-
for pattern,
|
| 338 |
-
if re.search(pattern,
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
return
|
| 343 |
|
| 344 |
-
def
|
| 345 |
-
"""
|
| 346 |
-
# Fix spacing issues
|
| 347 |
-
text = re.sub(r'\s+', ' ', text)
|
| 348 |
-
text = re.sub(r'\s+([,.!?;:])', r'\1', text)
|
| 349 |
-
text = re.sub(r'([,.!?;:])\s*([A-Z])', r'\1 \2', text)
|
| 350 |
-
|
| 351 |
-
# Ensure proper capitalization
|
| 352 |
sentences = sent_tokenize(text)
|
| 353 |
-
|
| 354 |
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
sentence = sentence[0].upper() + sentence[1:]
|
| 358 |
-
corrected_sentences.append(sentence)
|
| 359 |
-
|
| 360 |
-
text = " ".join(corrected_sentences)
|
| 361 |
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
-
return
|
| 367 |
|
| 368 |
-
def
|
| 369 |
-
"""
|
| 370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
-
|
|
|
|
|
|
|
| 373 |
|
| 374 |
-
#
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
current_text = self.apply_subtle_contractions(current_text, intensity_level)
|
| 379 |
-
current_text = self.add_natural_variation(current_text, intensity_level)
|
| 380 |
|
| 381 |
-
#
|
| 382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
score = flesch_reading_ease(text)
|
| 390 |
-
grade = flesch_kincaid_grade(text)
|
| 391 |
-
level = ("Very Easy" if score >= 90 else "Easy" if score >= 80 else
|
| 392 |
-
"Fairly Easy" if score >= 70 else "Standard" if score >= 60 else
|
| 393 |
-
"Fairly Difficult" if score >= 50 else "Difficult" if score >= 30 else
|
| 394 |
-
"Very Difficult")
|
| 395 |
-
return f"Flesch Score: {score:.1f} ({level})\nGrade Level: {grade:.1f}"
|
| 396 |
-
except Exception as e:
|
| 397 |
-
return f"Could not calculate readability: {str(e)}"
|
| 398 |
|
| 399 |
-
def humanize_text(self, text, intensity="standard"):
|
| 400 |
-
"""Main humanization method with
|
| 401 |
if not text or not text.strip():
|
| 402 |
return "Please provide text to humanize."
|
| 403 |
|
| 404 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
text = text.strip()
|
|
|
|
| 406 |
|
| 407 |
-
#
|
| 408 |
-
|
| 409 |
-
test_tokens = sent_tokenize("This is a test sentence.")
|
| 410 |
-
if not test_tokens:
|
| 411 |
-
raise Exception("NLTK tokenization failed")
|
| 412 |
-
except Exception as nltk_error:
|
| 413 |
-
return f"NLTK Error: {str(nltk_error)}. Please try again."
|
| 414 |
-
|
| 415 |
-
# Map intensity to numeric levels
|
| 416 |
-
intensity_mapping = {
|
| 417 |
-
"light": 1,
|
| 418 |
-
"standard": 2,
|
| 419 |
-
"heavy": 3
|
| 420 |
-
}
|
| 421 |
|
| 422 |
-
|
| 423 |
-
|
| 424 |
|
| 425 |
-
|
| 426 |
-
|
|
|
|
|
|
|
| 427 |
|
| 428 |
return result
|
| 429 |
|
| 430 |
except Exception as e:
|
|
|
|
| 431 |
return f"Error processing text: {str(e)}"
|
| 432 |
|
| 433 |
-
def
|
| 434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
humanizer = AdvancedAIHumanizer()
|
| 436 |
|
| 437 |
-
def
|
| 438 |
if not input_text:
|
| 439 |
-
return "Please enter
|
|
|
|
| 440 |
try:
|
| 441 |
result = humanizer.humanize_text(input_text, intensity)
|
| 442 |
-
|
| 443 |
-
return result,
|
| 444 |
except Exception as e:
|
| 445 |
-
return f"Error: {str(e)}", "Processing
|
| 446 |
|
| 447 |
-
#
|
| 448 |
-
|
| 449 |
.gradio-container {
|
| 450 |
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
|
|
|
| 451 |
}
|
| 452 |
.main-header {
|
| 453 |
text-align: center;
|
| 454 |
-
color:
|
| 455 |
-
font-size: 2.
|
| 456 |
-
font-weight:
|
| 457 |
margin-bottom: 20px;
|
| 458 |
-
padding:
|
| 459 |
-
|
| 460 |
}
|
| 461 |
-
.feature-
|
| 462 |
-
background:
|
| 463 |
-
border-radius:
|
| 464 |
-
padding:
|
| 465 |
-
margin:
|
| 466 |
-
|
| 467 |
-
|
|
|
|
| 468 |
}
|
| 469 |
-
.
|
| 470 |
-
background: #
|
| 471 |
-
|
| 472 |
-
padding: 15px;
|
| 473 |
-
|
| 474 |
-
|
|
|
|
|
|
|
|
|
|
| 475 |
}
|
| 476 |
"""
|
| 477 |
|
| 478 |
with gr.Blocks(
|
| 479 |
-
title="
|
| 480 |
-
theme=gr.themes.Soft(),
|
| 481 |
-
css=
|
| 482 |
) as interface:
|
| 483 |
|
| 484 |
gr.HTML("""
|
| 485 |
<div class="main-header">
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
<p style="font-size: 1.1em; color: #7f8c8d;">
|
| 491 |
-
Advanced humanization while maintaining professional tone and original meaning
|
| 492 |
-
</p>
|
| 493 |
</div>
|
| 494 |
""")
|
| 495 |
|
| 496 |
with gr.Row():
|
| 497 |
with gr.Column(scale=1):
|
| 498 |
input_text = gr.Textbox(
|
| 499 |
-
label="
|
| 500 |
-
lines=
|
| 501 |
-
placeholder="
|
| 502 |
-
info="π‘
|
| 503 |
show_copy_button=True
|
| 504 |
)
|
| 505 |
|
| 506 |
intensity = gr.Radio(
|
| 507 |
choices=[
|
| 508 |
-
("Light
|
| 509 |
-
("Standard
|
| 510 |
-
("Heavy
|
| 511 |
],
|
| 512 |
value="standard",
|
| 513 |
-
label="
|
| 514 |
-
info="Choose
|
| 515 |
)
|
| 516 |
|
| 517 |
btn = gr.Button(
|
| 518 |
-
"π Humanize
|
| 519 |
variant="primary",
|
| 520 |
size="lg"
|
| 521 |
)
|
| 522 |
|
| 523 |
with gr.Column(scale=1):
|
| 524 |
output_text = gr.Textbox(
|
| 525 |
-
label="β
Humanized Content",
|
| 526 |
-
lines=
|
| 527 |
show_copy_button=True,
|
| 528 |
-
info="
|
| 529 |
)
|
| 530 |
|
| 531 |
-
|
| 532 |
-
label="π
|
| 533 |
-
lines=
|
| 534 |
-
info="
|
| 535 |
)
|
| 536 |
|
| 537 |
gr.HTML("""
|
| 538 |
-
<div class="feature-
|
| 539 |
-
<
|
| 540 |
-
<div style="
|
| 541 |
-
<
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
</
|
| 548 |
-
<
|
| 549 |
-
<strong>π‘ Standard Processing (50%):</strong><br>
|
| 550 |
-
β’ Moderate humanization<br>
|
| 551 |
-
β’ Balanced approach<br>
|
| 552 |
-
β’ Professional tone maintained<br>
|
| 553 |
-
β’ Best for: Most AI-generated content
|
| 554 |
-
</div>
|
| 555 |
-
<div class="info-box">
|
| 556 |
-
<strong>π΄ Heavy Processing (70%):</strong><br>
|
| 557 |
-
β’ Extensive modifications<br>
|
| 558 |
-
β’ Maximum variation<br>
|
| 559 |
-
β’ Strong AI detection bypass<br>
|
| 560 |
-
β’ Best for: Highly detectable AI text
|
| 561 |
-
</div>
|
| 562 |
</div>
|
| 563 |
</div>
|
| 564 |
""")
|
| 565 |
|
| 566 |
gr.HTML("""
|
| 567 |
-
<div class="feature-
|
| 568 |
-
<h3
|
| 569 |
-
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(
|
| 570 |
-
<div
|
| 571 |
-
<strong
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
Keeps appropriate formality level
|
| 577 |
-
</div>
|
| 578 |
-
<div class="info-box">
|
| 579 |
-
<strong>π Structure Variation:</strong><br>
|
| 580 |
-
Natural sentence pattern diversity
|
| 581 |
-
</div>
|
| 582 |
-
<div class="info-box">
|
| 583 |
-
<strong>π Smart Synonyms:</strong><br>
|
| 584 |
-
Context-aware vocabulary enhancement
|
| 585 |
</div>
|
| 586 |
-
<div
|
| 587 |
-
<strong
|
| 588 |
-
|
|
|
|
|
|
|
|
|
|
| 589 |
</div>
|
| 590 |
-
<div
|
| 591 |
-
<strong
|
| 592 |
-
|
|
|
|
|
|
|
|
|
|
| 593 |
</div>
|
| 594 |
</div>
|
| 595 |
</div>
|
|
@@ -597,22 +848,22 @@ def create_interface():
|
|
| 597 |
|
| 598 |
# Event handlers
|
| 599 |
btn.click(
|
| 600 |
-
fn=
|
| 601 |
inputs=[input_text, intensity],
|
| 602 |
-
outputs=[output_text,
|
| 603 |
)
|
| 604 |
|
| 605 |
input_text.submit(
|
| 606 |
-
fn=
|
| 607 |
inputs=[input_text, intensity],
|
| 608 |
-
outputs=[output_text,
|
| 609 |
)
|
| 610 |
|
| 611 |
return interface
|
| 612 |
|
| 613 |
if __name__ == "__main__":
|
| 614 |
-
print("π Starting
|
| 615 |
-
app =
|
| 616 |
app.launch(
|
| 617 |
server_name="0.0.0.0",
|
| 618 |
server_port=7860,
|
|
|
|
| 3 |
import random
|
| 4 |
import re
|
| 5 |
import nltk
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from collections import defaultdict, Counter
|
| 9 |
import string
|
| 10 |
+
import math
|
| 11 |
+
from typing import List, Dict, Tuple, Optional
|
| 12 |
+
|
| 13 |
+
# Advanced NLP imports
|
| 14 |
+
import spacy
|
| 15 |
+
from transformers import (
|
| 16 |
+
AutoTokenizer, AutoModelForSequenceClassification,
|
| 17 |
+
T5Tokenizer, T5ForConditionalGeneration,
|
| 18 |
+
pipeline, BertTokenizer, BertModel
|
| 19 |
+
)
|
| 20 |
+
from sentence_transformers import SentenceTransformer
|
| 21 |
+
import gensim.downloader as api
|
| 22 |
+
from textblob import TextBlob
|
| 23 |
+
from textstat import flesch_reading_ease, flesch_kincaid_grade
|
| 24 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
| 25 |
+
from nltk.corpus import wordnet, stopwords
|
| 26 |
+
from nltk.tag import pos_tag
|
| 27 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 28 |
|
| 29 |
+
# Setup environment
|
| 30 |
os.environ['NLTK_DATA'] = '/tmp/nltk_data'
|
| 31 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
| 32 |
|
| 33 |
+
def download_dependencies():
|
| 34 |
+
"""Download all required dependencies"""
|
| 35 |
try:
|
| 36 |
+
# NLTK data
|
| 37 |
os.makedirs('/tmp/nltk_data', exist_ok=True)
|
| 38 |
nltk.data.path.append('/tmp/nltk_data')
|
| 39 |
|
| 40 |
+
required_nltk = ['punkt', 'punkt_tab', 'averaged_perceptron_tagger',
|
| 41 |
+
'stopwords', 'wordnet', 'omw-1.4', 'vader_lexicon']
|
| 42 |
|
| 43 |
+
for data in required_nltk:
|
| 44 |
try:
|
| 45 |
nltk.download(data, download_dir='/tmp/nltk_data', quiet=True)
|
|
|
|
| 46 |
except Exception as e:
|
| 47 |
print(f"Failed to download {data}: {e}")
|
| 48 |
+
|
| 49 |
+
print("β
NLTK dependencies loaded")
|
| 50 |
|
| 51 |
except Exception as e:
|
| 52 |
+
print(f"β Dependency setup error: {e}")
|
| 53 |
|
| 54 |
+
download_dependencies()
|
| 55 |
|
| 56 |
class AdvancedAIHumanizer:
|
| 57 |
def __init__(self):
|
| 58 |
+
self.setup_models()
|
| 59 |
self.setup_humanization_patterns()
|
| 60 |
+
self.load_linguistic_resources()
|
| 61 |
|
| 62 |
+
def setup_models(self):
|
| 63 |
+
"""Initialize advanced NLP models"""
|
| 64 |
+
try:
|
| 65 |
+
print("π Loading advanced models...")
|
| 66 |
+
|
| 67 |
+
# Sentence transformer for semantic similarity
|
| 68 |
+
try:
|
| 69 |
+
self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 70 |
+
print("β
Sentence transformer loaded")
|
| 71 |
+
except:
|
| 72 |
+
self.sentence_model = None
|
| 73 |
+
print("β οΈ Sentence transformer not available")
|
| 74 |
+
|
| 75 |
+
# Paraphrasing model
|
| 76 |
+
try:
|
| 77 |
+
self.paraphrase_tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_paraphraser')
|
| 78 |
+
self.paraphrase_model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser')
|
| 79 |
+
print("β
Paraphrasing model loaded")
|
| 80 |
+
except:
|
| 81 |
+
self.paraphrase_tokenizer = None
|
| 82 |
+
self.paraphrase_model = None
|
| 83 |
+
print("β οΈ Paraphrasing model not available")
|
| 84 |
+
|
| 85 |
+
# SpaCy model
|
| 86 |
+
try:
|
| 87 |
+
self.nlp = spacy.load("en_core_web_sm")
|
| 88 |
+
print("β
SpaCy model loaded")
|
| 89 |
+
except:
|
| 90 |
+
try:
|
| 91 |
+
os.system("python -m spacy download en_core_web_sm")
|
| 92 |
+
self.nlp = spacy.load("en_core_web_sm")
|
| 93 |
+
print("β
SpaCy model downloaded and loaded")
|
| 94 |
+
except:
|
| 95 |
+
self.nlp = None
|
| 96 |
+
print("β οΈ SpaCy model not available")
|
| 97 |
+
|
| 98 |
+
# Word embeddings
|
| 99 |
+
try:
|
| 100 |
+
self.word_vectors = api.load("glove-wiki-gigaword-100")
|
| 101 |
+
print("β
Word embeddings loaded")
|
| 102 |
+
except:
|
| 103 |
+
self.word_vectors = None
|
| 104 |
+
print("β οΈ Word embeddings not available")
|
| 105 |
+
|
| 106 |
+
except Exception as e:
|
| 107 |
+
print(f"β Model setup error: {e}")
|
| 108 |
+
|
| 109 |
def setup_humanization_patterns(self):
|
| 110 |
+
"""Setup comprehensive humanization patterns"""
|
| 111 |
+
|
| 112 |
+
# Expanded AI-flagged terms
|
| 113 |
+
self.ai_indicators = {
|
| 114 |
+
# Formal academic terms
|
| 115 |
+
r'\bdelve into\b': ["explore", "examine", "investigate", "analyze", "study", "look into", "dig into"],
|
| 116 |
+
r'\bembark upon?\b': ["begin", "start", "initiate", "commence", "launch", "undertake", "set out"],
|
| 117 |
+
r'\ba testament to\b': ["evidence of", "proof of", "shows", "demonstrates", "indicates", "reflects"],
|
| 118 |
+
r'\blandscape of\b': ["world of", "field of", "area of", "domain of", "realm of", "sphere of"],
|
| 119 |
+
r'\bnavigating\b': ["handling", "managing", "dealing with", "working through", "addressing"],
|
| 120 |
+
r'\bmeticulous\b': ["careful", "thorough", "detailed", "precise", "exact", "systematic"],
|
| 121 |
+
r'\bintricate\b': ["complex", "detailed", "sophisticated", "elaborate", "complicated"],
|
| 122 |
+
r'\bmyriad\b': ["many", "numerous", "countless", "various", "multiple", "diverse"],
|
| 123 |
+
r'\bplethora\b': ["abundance", "wealth", "variety", "range", "collection", "array"],
|
| 124 |
+
r'\bparadigm\b': ["model", "framework", "approach", "system", "method", "way"],
|
| 125 |
+
r'\bsynergy\b': ["teamwork", "cooperation", "collaboration", "coordination", "unity"],
|
| 126 |
+
r'\bleverage\b': ["use", "utilize", "employ", "apply", "harness", "exploit"],
|
| 127 |
+
r'\bfacilitate\b': ["help", "assist", "enable", "support", "aid", "promote"],
|
| 128 |
+
r'\boptimize\b': ["improve", "enhance", "refine", "perfect", "maximize", "boost"],
|
| 129 |
+
r'\bstreamline\b': ["simplify", "improve", "refine", "enhance", "smooth"],
|
| 130 |
+
r'\brobust\b': ["strong", "reliable", "solid", "sturdy", "durable", "effective"],
|
| 131 |
+
r'\bseamless\b': ["smooth", "fluid", "effortless", "integrated", "unified"],
|
| 132 |
+
r'\binnovative\b': ["creative", "original", "new", "fresh", "novel", "inventive"],
|
| 133 |
+
r'\bcutting-edge\b': ["advanced", "modern", "latest", "new", "current", "leading"],
|
| 134 |
+
r'\bstate-of-the-art\b': ["advanced", "modern", "latest", "current", "top-tier"],
|
| 135 |
+
|
| 136 |
+
# Transition phrases
|
| 137 |
+
r'\bfurthermore\b': ["also", "additionally", "moreover", "besides", "what's more", "on top of that"],
|
| 138 |
+
r'\bmoreover\b': ["also", "furthermore", "additionally", "besides", "plus", "what's more"],
|
| 139 |
+
r'\bhowever\b': ["but", "yet", "still", "though", "although", "nevertheless"],
|
| 140 |
+
r'\bnevertheless\b': ["however", "yet", "still", "even so", "nonetheless", "all the same"],
|
| 141 |
+
r'\btherefore\b': ["so", "thus", "hence", "as a result", "consequently", "for this reason"],
|
| 142 |
+
r'\bconsequently\b': ["so", "therefore", "thus", "as a result", "hence", "accordingly"],
|
| 143 |
+
r'\bin conclusion\b': ["finally", "lastly", "to wrap up", "in the end", "ultimately"],
|
| 144 |
+
r'\bto summarize\b': ["in short", "briefly", "to sum up", "in essence", "overall"],
|
| 145 |
+
r'\bin summary\b': ["briefly", "in short", "to sum up", "overall", "in essence"],
|
| 146 |
+
|
| 147 |
+
# Academic connectors
|
| 148 |
+
r'\bin order to\b': ["to", "so as to", "with the aim of", "for the purpose of"],
|
| 149 |
+
r'\bdue to the fact that\b': ["because", "since", "as", "given that"],
|
| 150 |
+
r'\bfor the purpose of\b': ["to", "in order to", "for", "with the goal of"],
|
| 151 |
+
r'\bwith regard to\b': ["about", "concerning", "regarding", "as for"],
|
| 152 |
+
r'\bin terms of\b': ["regarding", "concerning", "as for", "when it comes to"],
|
| 153 |
+
r'\bby means of\b': ["through", "via", "using", "by way of"],
|
| 154 |
+
r'\bas a result of\b': ["because of", "due to", "owing to", "from"],
|
| 155 |
+
r'\bin the event that\b': ["if", "should", "in case", "when"],
|
| 156 |
+
r'\bprior to\b': ["before", "ahead of", "earlier than"],
|
| 157 |
+
r'\bsubsequent to\b': ["after", "following", "later than"],
|
| 158 |
}
|
| 159 |
|
| 160 |
+
# Human-like sentence starters
|
| 161 |
+
self.human_starters = [
|
| 162 |
+
"Actually,", "Honestly,", "Basically,", "Essentially,", "Really,",
|
| 163 |
+
"Generally,", "Typically,", "Usually,", "Often,", "Sometimes,",
|
| 164 |
+
"Clearly,", "Obviously,", "Naturally,", "Certainly,", "Definitely,",
|
| 165 |
+
"Interestingly,", "Surprisingly,", "Remarkably,", "Notably,", "Importantly,",
|
| 166 |
+
"What's more,", "Plus,", "Also,", "Besides,", "On top of that,",
|
| 167 |
+
"In fact,", "Indeed,", "Of course,", "No doubt,", "Without question,"
|
| 168 |
+
]
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
# Casual connectors
|
| 171 |
+
self.casual_connectors = [
|
| 172 |
+
"and", "but", "so", "yet", "or", "nor", "for",
|
| 173 |
+
"plus", "also", "too", "as well", "besides",
|
| 174 |
+
"though", "although", "while", "whereas", "since"
|
| 175 |
]
|
| 176 |
|
| 177 |
+
# Professional contractions
|
| 178 |
+
self.contractions = {
|
| 179 |
+
r'\bit is\b': "it's", r'\bthat is\b': "that's", r'\bthere is\b': "there's",
|
| 180 |
+
r'\bwho is\b': "who's", r'\bwhat is\b': "what's", r'\bwhere is\b': "where's",
|
| 181 |
+
r'\bthey are\b': "they're", r'\bwe are\b': "we're", r'\byou are\b': "you're",
|
| 182 |
+
r'\bI am\b': "I'm", r'\bhe is\b': "he's", r'\bshe is\b': "she's",
|
| 183 |
+
r'\bcannot\b': "can't", r'\bdo not\b': "don't", r'\bdoes not\b': "doesn't",
|
| 184 |
+
r'\bwill not\b': "won't", r'\bwould not\b': "wouldn't", r'\bshould not\b': "shouldn't",
|
| 185 |
+
r'\bcould not\b': "couldn't", r'\bhave not\b': "haven't", r'\bhas not\b': "hasn't",
|
| 186 |
+
r'\bhad not\b': "hadn't", r'\bis not\b': "isn't", r'\bare not\b': "aren't",
|
| 187 |
+
r'\bwas not\b': "wasn't", r'\bwere not\b': "weren't"
|
|
|
|
| 188 |
}
|
| 189 |
|
| 190 |
+
def load_linguistic_resources(self):
|
| 191 |
+
"""Load additional linguistic resources"""
|
| 192 |
try:
|
| 193 |
+
# Common English words for frequency analysis
|
| 194 |
+
self.stop_words = set(stopwords.words('english'))
|
| 195 |
+
|
| 196 |
+
# Common word frequencies (simplified)
|
| 197 |
+
self.common_words = {
|
| 198 |
+
'said', 'say', 'get', 'go', 'know', 'think', 'see', 'make', 'come', 'take',
|
| 199 |
+
'good', 'new', 'first', 'last', 'long', 'great', 'small', 'own', 'other',
|
| 200 |
+
'old', 'right', 'big', 'high', 'different', 'following', 'large', 'next'
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
print("β
Linguistic resources loaded")
|
| 204 |
+
|
| 205 |
+
except Exception as e:
|
| 206 |
+
print(f"β Linguistic resource error: {e}")
|
| 207 |
+
|
| 208 |
+
def calculate_perplexity(self, text: str) -> float:
|
| 209 |
+
"""Calculate text perplexity to measure predictability"""
|
| 210 |
+
try:
|
| 211 |
+
words = word_tokenize(text.lower())
|
| 212 |
+
word_freq = Counter(words)
|
| 213 |
+
total_words = len(words)
|
| 214 |
+
|
| 215 |
+
# Calculate probability distribution
|
| 216 |
+
probs = []
|
| 217 |
+
for word in words:
|
| 218 |
+
prob = word_freq[word] / total_words
|
| 219 |
+
if prob > 0:
|
| 220 |
+
probs.append(-math.log2(prob))
|
| 221 |
+
|
| 222 |
+
if probs:
|
| 223 |
+
entropy = sum(probs) / len(probs)
|
| 224 |
+
perplexity = 2 ** entropy
|
| 225 |
+
return perplexity
|
| 226 |
+
return 50.0 # Default moderate perplexity
|
| 227 |
+
|
| 228 |
except:
|
| 229 |
+
return 50.0
|
|
|
|
| 230 |
|
| 231 |
+
def calculate_burstiness(self, text: str) -> float:
|
| 232 |
+
"""Calculate burstiness (variation in sentence length)"""
|
| 233 |
+
try:
|
| 234 |
+
sentences = sent_tokenize(text)
|
| 235 |
+
lengths = [len(word_tokenize(sent)) for sent in sentences]
|
| 236 |
|
| 237 |
+
if len(lengths) < 2:
|
| 238 |
+
return 1.0
|
| 239 |
+
|
| 240 |
+
mean_length = np.mean(lengths)
|
| 241 |
+
variance = np.var(lengths)
|
| 242 |
+
|
| 243 |
+
if mean_length == 0:
|
| 244 |
+
return 1.0
|
| 245 |
+
|
| 246 |
+
burstiness = variance / mean_length
|
| 247 |
+
return burstiness
|
| 248 |
+
|
| 249 |
+
except:
|
| 250 |
+
return 1.0
|
| 251 |
+
|
| 252 |
+
def get_semantic_similarity(self, text1: str, text2: str) -> float:
|
| 253 |
+
"""Calculate semantic similarity between texts"""
|
| 254 |
try:
|
| 255 |
+
if self.sentence_model:
|
| 256 |
+
embeddings = self.sentence_model.encode([text1, text2])
|
| 257 |
+
similarity = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]
|
| 258 |
+
return similarity
|
| 259 |
+
return 0.8 # Default high similarity
|
| 260 |
+
except:
|
| 261 |
+
return 0.8
|
| 262 |
+
|
| 263 |
+
def advanced_paraphrase(self, text: str, max_length: int = 512) -> str:
|
| 264 |
+
"""Advanced paraphrasing using T5 model"""
|
| 265 |
+
try:
|
| 266 |
+
if not self.paraphrase_model or not self.paraphrase_tokenizer:
|
| 267 |
+
return text
|
| 268 |
+
|
| 269 |
+
# Prepare input
|
| 270 |
+
input_text = f"paraphrase: {text}"
|
| 271 |
+
inputs = self.paraphrase_tokenizer.encode(
|
| 272 |
+
input_text,
|
| 273 |
+
return_tensors='pt',
|
| 274 |
+
max_length=max_length,
|
| 275 |
+
truncation=True
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
# Generate paraphrase
|
| 279 |
+
with torch.no_grad():
|
| 280 |
+
outputs = self.paraphrase_model.generate(
|
| 281 |
+
inputs,
|
| 282 |
+
max_length=max_length,
|
| 283 |
+
num_return_sequences=1,
|
| 284 |
+
temperature=0.7,
|
| 285 |
+
do_sample=True,
|
| 286 |
+
top_p=0.9,
|
| 287 |
+
repetition_penalty=1.2
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
paraphrased = self.paraphrase_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 291 |
+
|
| 292 |
+
# Check semantic similarity
|
| 293 |
+
similarity = self.get_semantic_similarity(text, paraphrased)
|
| 294 |
+
if similarity > 0.7: # Only use if meaning preserved
|
| 295 |
+
return paraphrased
|
| 296 |
+
return text
|
| 297 |
+
|
| 298 |
+
except Exception as e:
|
| 299 |
+
print(f"Paraphrase error: {e}")
|
| 300 |
+
return text
|
| 301 |
+
|
| 302 |
+
def get_contextual_synonym(self, word: str, context: str = "") -> str:
|
| 303 |
+
"""Get contextually appropriate synonym"""
|
| 304 |
+
try:
|
| 305 |
+
# Use word embeddings if available
|
| 306 |
+
if self.word_vectors and word.lower() in self.word_vectors:
|
| 307 |
+
similar_words = self.word_vectors.most_similar(word.lower(), topn=10)
|
| 308 |
+
candidates = [w[0] for w in similar_words if w[1] > 0.6]
|
| 309 |
+
|
| 310 |
+
if candidates:
|
| 311 |
+
# Filter by length similarity
|
| 312 |
+
suitable = [w for w in candidates if abs(len(w) - len(word)) <= 2]
|
| 313 |
+
if suitable:
|
| 314 |
+
return random.choice(suitable[:3])
|
| 315 |
+
|
| 316 |
+
# Fallback to WordNet
|
| 317 |
synsets = wordnet.synsets(word.lower())
|
| 318 |
+
if synsets:
|
| 319 |
+
synonyms = []
|
| 320 |
+
for synset in synsets[:2]:
|
| 321 |
+
for lemma in synset.lemmas():
|
| 322 |
+
synonym = lemma.name().replace('_', ' ')
|
| 323 |
+
if synonym != word.lower() and len(synonym) > 2:
|
| 324 |
+
synonyms.append(synonym)
|
| 325 |
+
|
| 326 |
+
if synonyms:
|
| 327 |
+
suitable = [s for s in synonyms if abs(len(s) - len(word)) <= 3]
|
| 328 |
+
if suitable:
|
| 329 |
+
return random.choice(suitable)
|
| 330 |
+
return random.choice(synonyms[:3])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
return word
|
| 333 |
|
| 334 |
except:
|
| 335 |
return word
|
| 336 |
|
| 337 |
+
def advanced_sentence_restructure(self, sentence: str) -> str:
|
| 338 |
+
"""Advanced sentence restructuring using dependency parsing"""
|
| 339 |
+
try:
|
| 340 |
+
if not self.nlp:
|
| 341 |
+
return sentence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
|
| 343 |
+
doc = self.nlp(sentence)
|
| 344 |
+
|
| 345 |
+
# Find main verb and subject
|
| 346 |
+
main_verb = None
|
| 347 |
+
subject = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
+
for token in doc:
|
| 350 |
+
if token.dep_ == "ROOT" and token.pos_ == "VERB":
|
| 351 |
+
main_verb = token
|
| 352 |
+
if token.dep_ in ["nsubj", "nsubjpass"]:
|
| 353 |
+
subject = token
|
| 354 |
|
| 355 |
+
# Simple restructuring patterns
|
| 356 |
+
if main_verb and subject and len(sentence.split()) > 10:
|
| 357 |
+
# Try to create variation
|
| 358 |
+
restructuring_patterns = [
|
| 359 |
+
self.move_adverb_clause,
|
| 360 |
+
self.split_compound_sentence,
|
| 361 |
+
self.vary_voice_advanced
|
| 362 |
+
]
|
| 363 |
+
|
| 364 |
+
pattern = random.choice(restructuring_patterns)
|
| 365 |
+
result = pattern(sentence, doc)
|
| 366 |
+
|
| 367 |
+
# Ensure semantic similarity
|
| 368 |
+
similarity = self.get_semantic_similarity(sentence, result)
|
| 369 |
+
if similarity > 0.8:
|
| 370 |
+
return result
|
| 371 |
|
| 372 |
+
return sentence
|
| 373 |
|
| 374 |
+
except:
|
| 375 |
+
return sentence
|
| 376 |
|
| 377 |
+
def move_adverb_clause(self, sentence: str, doc=None) -> str:
|
| 378 |
+
"""Move adverbial clauses for variation"""
|
| 379 |
+
# Simple pattern: move "because/since/when" clauses
|
| 380 |
+
if_patterns = [
|
| 381 |
+
(r'^(.*?),\s*(because|since|when|if|although|while)\s+(.*?)$', r'\2 \3, \1'),
|
| 382 |
+
(r'^(.*?)\s+(because|since|when|if|although|while)\s+(.*?)$', r'\2 \3, \1')
|
| 383 |
+
]
|
| 384 |
+
|
| 385 |
+
for pattern, replacement in if_patterns:
|
| 386 |
+
if re.search(pattern, sentence, re.IGNORECASE):
|
| 387 |
+
result = re.sub(pattern, replacement, sentence, flags=re.IGNORECASE)
|
| 388 |
+
if result != sentence:
|
| 389 |
+
return result.strip()
|
| 390 |
+
|
| 391 |
+
return sentence
|
| 392 |
+
|
| 393 |
+
def split_compound_sentence(self, sentence: str, doc=None) -> str:
|
| 394 |
+
"""Split overly long compound sentences"""
|
| 395 |
+
# Split on coordinating conjunctions
|
| 396 |
+
conjunctions = [', and ', ', but ', ', so ', ', yet ', ', or ']
|
| 397 |
+
|
| 398 |
+
for conj in conjunctions:
|
| 399 |
+
if conj in sentence and len(sentence.split()) > 15:
|
| 400 |
+
parts = sentence.split(conj, 1)
|
| 401 |
+
if len(parts) == 2:
|
| 402 |
+
first = parts[0].strip()
|
| 403 |
+
second = parts[1].strip()
|
| 404 |
+
|
| 405 |
+
# Ensure both parts are complete
|
| 406 |
+
if len(first.split()) > 3 and len(second.split()) > 3:
|
| 407 |
+
connector = random.choice([
|
| 408 |
+
"Additionally", "Furthermore", "Moreover", "Also", "Plus"
|
| 409 |
+
])
|
| 410 |
+
return f"{first}. {connector}, {second.lower()}"
|
| 411 |
+
|
| 412 |
+
return sentence
|
| 413 |
+
|
| 414 |
+
def vary_voice_advanced(self, sentence: str, doc=None) -> str:
|
| 415 |
+
"""Advanced voice variation"""
|
| 416 |
+
# Passive to active patterns
|
| 417 |
passive_patterns = [
|
| 418 |
+
(r'(\w+)\s+(?:is|are|was|were)\s+(\w+ed|known|seen|made|used|done|taken|given)\s+by\s+(.+)',
|
| 419 |
r'\3 \2 \1'),
|
| 420 |
+
(r'(\w+)\s+(?:has|have)\s+been\s+(\w+ed|known|seen|made|used|done|taken|given)\s+by\s+(.+)',
|
| 421 |
+
r'\3 \2 \1')
|
| 422 |
]
|
| 423 |
|
| 424 |
for pattern, replacement in passive_patterns:
|
| 425 |
+
if re.search(pattern, sentence, re.IGNORECASE):
|
| 426 |
+
result = re.sub(pattern, replacement, sentence, flags=re.IGNORECASE)
|
| 427 |
+
if result != sentence:
|
| 428 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
|
| 430 |
return sentence
|
| 431 |
|
| 432 |
+
def add_human_touches(self, text: str, intensity: int = 2) -> str:
|
| 433 |
+
"""Add human-like writing patterns"""
|
| 434 |
+
sentences = sent_tokenize(text)
|
| 435 |
+
humanized = []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
|
| 437 |
+
touch_probability = {1: 0.1, 2: 0.2, 3: 0.35}
|
| 438 |
+
prob = touch_probability.get(intensity, 0.2)
|
| 439 |
|
| 440 |
+
for i, sentence in enumerate(sentences):
|
| 441 |
+
current = sentence
|
| 442 |
+
|
| 443 |
+
# Add casual starters occasionally
|
| 444 |
+
if i > 0 and random.random() < prob and len(current.split()) > 6:
|
| 445 |
+
starter = random.choice(self.human_starters)
|
| 446 |
+
current = f"{starter} {current.lower()}"
|
| 447 |
+
|
| 448 |
+
# Add brief interjections
|
| 449 |
+
if random.random() < prob * 0.5:
|
| 450 |
+
interjections = [
|
| 451 |
+
", of course,", ", naturally,", ", obviously,",
|
| 452 |
+
", clearly,", ", indeed,", ", in fact,"
|
| 453 |
+
]
|
| 454 |
+
if "," in current:
|
| 455 |
+
parts = current.split(",", 1)
|
| 456 |
+
if len(parts) == 2:
|
| 457 |
+
interjection = random.choice(interjections)
|
| 458 |
+
current = f"{parts[0]}{interjection}{parts[1]}"
|
| 459 |
+
|
| 460 |
+
# Vary sentence endings
|
| 461 |
+
if random.random() < prob * 0.3 and current.endswith('.'):
|
| 462 |
+
if "important" in current.lower() or "significant" in current.lower():
|
| 463 |
+
current = current[:-1] + ", which is crucial."
|
| 464 |
+
elif "shows" in current.lower() or "demonstrates" in current.lower():
|
| 465 |
+
current = current[:-1] + ", as evidenced."
|
| 466 |
+
|
| 467 |
+
humanized.append(current)
|
| 468 |
+
|
| 469 |
+
return " ".join(humanized)
|
| 470 |
+
|
| 471 |
+
def apply_advanced_contractions(self, text: str, intensity: int = 2) -> str:
|
| 472 |
+
"""Apply natural contractions"""
|
| 473 |
+
contraction_probability = {1: 0.3, 2: 0.5, 3: 0.7}
|
| 474 |
+
prob = contraction_probability.get(intensity, 0.5)
|
| 475 |
+
|
| 476 |
+
for pattern, contraction in self.contractions.items():
|
| 477 |
if re.search(pattern, text, re.IGNORECASE) and random.random() < prob:
|
| 478 |
text = re.sub(pattern, contraction, text, flags=re.IGNORECASE)
|
| 479 |
+
|
| 480 |
return text
|
| 481 |
|
| 482 |
+
def enhance_vocabulary_diversity(self, text: str, intensity: int = 2) -> str:
|
| 483 |
+
"""Enhanced vocabulary diversification"""
|
| 484 |
words = word_tokenize(text)
|
| 485 |
+
enhanced = []
|
| 486 |
+
word_usage = defaultdict(int)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
|
| 488 |
+
synonym_probability = {1: 0.15, 2: 0.25, 3: 0.4}
|
| 489 |
+
prob = synonym_probability.get(intensity, 0.25)
|
| 490 |
|
| 491 |
+
# Track repetitive words
|
| 492 |
for word in words:
|
| 493 |
if word.isalpha() and len(word) > 4:
|
| 494 |
+
word_usage[word.lower()] += 1
|
| 495 |
|
| 496 |
for word in words:
|
| 497 |
if (word.isalpha() and len(word) > 4 and
|
| 498 |
+
word.lower() not in self.stop_words and
|
| 499 |
+
word_usage[word.lower()] > 1 and
|
| 500 |
random.random() < prob):
|
| 501 |
|
| 502 |
+
# Get context around the word
|
| 503 |
+
word_index = words.index(word)
|
| 504 |
+
context_start = max(0, word_index - 5)
|
| 505 |
+
context_end = min(len(words), word_index + 5)
|
| 506 |
+
context = " ".join(words[context_start:context_end])
|
| 507 |
|
| 508 |
+
synonym = self.get_contextual_synonym(word, context)
|
| 509 |
+
enhanced.append(synonym)
|
| 510 |
+
else:
|
| 511 |
+
enhanced.append(word)
|
| 512 |
+
|
| 513 |
+
return " ".join(enhanced)
|
| 514 |
|
| 515 |
+
def multiple_pass_humanization(self, text: str, intensity: int = 2) -> str:
|
| 516 |
+
"""Apply multiple humanization passes"""
|
| 517 |
+
current_text = text
|
|
|
|
| 518 |
|
| 519 |
+
passes = {
|
| 520 |
+
1: 2, # Light: 2 passes
|
| 521 |
+
2: 3, # Standard: 3 passes
|
| 522 |
+
3: 4 # Heavy: 4 passes
|
|
|
|
| 523 |
}
|
| 524 |
|
| 525 |
+
num_passes = passes.get(intensity, 3)
|
| 526 |
|
| 527 |
+
for pass_num in range(num_passes):
|
| 528 |
+
print(f"π Pass {pass_num + 1}/{num_passes}")
|
| 529 |
+
|
| 530 |
+
# Different focus each pass
|
| 531 |
+
if pass_num == 0:
|
| 532 |
+
# Pass 1: AI pattern replacement
|
| 533 |
+
current_text = self.replace_ai_patterns(current_text, intensity)
|
| 534 |
+
|
| 535 |
+
elif pass_num == 1:
|
| 536 |
+
# Pass 2: Sentence restructuring
|
| 537 |
+
current_text = self.restructure_sentences(current_text, intensity)
|
| 538 |
|
| 539 |
+
elif pass_num == 2:
|
| 540 |
+
# Pass 3: Vocabulary enhancement
|
| 541 |
+
current_text = self.enhance_vocabulary_diversity(current_text, intensity)
|
| 542 |
+
current_text = self.apply_advanced_contractions(current_text, intensity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 543 |
|
| 544 |
+
elif pass_num == 3:
|
| 545 |
+
# Pass 4: Human touches and final polish
|
| 546 |
+
current_text = self.add_human_touches(current_text, intensity)
|
| 547 |
+
if random.random() < 0.3: # Occasional advanced paraphrasing
|
| 548 |
+
sentences = sent_tokenize(current_text)
|
| 549 |
+
paraphrased_sentences = []
|
| 550 |
+
for sent in sentences:
|
| 551 |
+
if len(sent.split()) > 8 and random.random() < 0.2:
|
| 552 |
+
paraphrased = self.advanced_paraphrase(sent)
|
| 553 |
+
paraphrased_sentences.append(paraphrased)
|
| 554 |
+
else:
|
| 555 |
+
paraphrased_sentences.append(sent)
|
| 556 |
+
current_text = " ".join(paraphrased_sentences)
|
| 557 |
|
| 558 |
+
# Check semantic preservation
|
| 559 |
+
similarity = self.get_semantic_similarity(text, current_text)
|
| 560 |
+
if similarity < 0.75:
|
| 561 |
+
print(f"β οΈ Semantic drift detected (similarity: {similarity:.2f}), reverting")
|
| 562 |
+
break
|
| 563 |
+
|
| 564 |
+
return current_text
|
| 565 |
|
| 566 |
+
def replace_ai_patterns(self, text: str, intensity: int = 2) -> str:
|
| 567 |
+
"""Replace AI-flagged patterns"""
|
| 568 |
+
result = text
|
| 569 |
+
replacement_probability = {1: 0.6, 2: 0.8, 3: 0.95}
|
| 570 |
+
prob = replacement_probability.get(intensity, 0.8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 571 |
|
| 572 |
+
for pattern, replacements in self.ai_indicators.items():
|
| 573 |
+
if re.search(pattern, result, re.IGNORECASE) and random.random() < prob:
|
| 574 |
+
replacement = random.choice(replacements)
|
| 575 |
+
result = re.sub(pattern, replacement, result, flags=re.IGNORECASE)
|
| 576 |
+
|
| 577 |
+
return result
|
| 578 |
|
| 579 |
+
def restructure_sentences(self, text: str, intensity: int = 2) -> str:
|
| 580 |
+
"""Restructure sentences for variation"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
sentences = sent_tokenize(text)
|
| 582 |
+
restructured = []
|
| 583 |
|
| 584 |
+
restructure_probability = {1: 0.2, 2: 0.35, 3: 0.5}
|
| 585 |
+
prob = restructure_probability.get(intensity, 0.35)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 586 |
|
| 587 |
+
for sentence in sentences:
|
| 588 |
+
if len(sentence.split()) > 10 and random.random() < prob:
|
| 589 |
+
restructured_sent = self.advanced_sentence_restructure(sentence)
|
| 590 |
+
restructured.append(restructured_sent)
|
| 591 |
+
else:
|
| 592 |
+
restructured.append(sentence)
|
| 593 |
|
| 594 |
+
return " ".join(restructured)
|
| 595 |
|
| 596 |
+
def final_quality_check(self, original: str, processed: str) -> Tuple[str, Dict]:
|
| 597 |
+
"""Final quality and coherence check"""
|
| 598 |
+
# Calculate metrics
|
| 599 |
+
metrics = {
|
| 600 |
+
'semantic_similarity': self.get_semantic_similarity(original, processed),
|
| 601 |
+
'perplexity': self.calculate_perplexity(processed),
|
| 602 |
+
'burstiness': self.calculate_burstiness(processed),
|
| 603 |
+
'readability': flesch_reading_ease(processed)
|
| 604 |
+
}
|
| 605 |
|
| 606 |
+
# Quality thresholds
|
| 607 |
+
if metrics['semantic_similarity'] < 0.75:
|
| 608 |
+
print("β οΈ Low semantic similarity detected")
|
| 609 |
|
| 610 |
+
# Final cleanup
|
| 611 |
+
processed = re.sub(r'\s+', ' ', processed)
|
| 612 |
+
processed = re.sub(r'\s+([,.!?;:])', r'\1', processed)
|
| 613 |
+
processed = re.sub(r'([,.!?;:])\s*([A-Z])', r'\1 \2', processed)
|
|
|
|
|
|
|
| 614 |
|
| 615 |
+
# Capitalize sentences
|
| 616 |
+
sentences = sent_tokenize(processed)
|
| 617 |
+
corrected = []
|
| 618 |
+
for sentence in sentences:
|
| 619 |
+
if sentence and sentence[0].islower():
|
| 620 |
+
sentence = sentence[0].upper() + sentence[1:]
|
| 621 |
+
corrected.append(sentence)
|
| 622 |
|
| 623 |
+
processed = " ".join(corrected)
|
| 624 |
+
processed = re.sub(r'\.+', '.', processed)
|
| 625 |
+
processed = processed.strip()
|
| 626 |
+
|
| 627 |
+
return processed, metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
|
| 629 |
+
def humanize_text(self, text: str, intensity: str = "standard") -> str:
|
| 630 |
+
"""Main humanization method with advanced processing"""
|
| 631 |
if not text or not text.strip():
|
| 632 |
return "Please provide text to humanize."
|
| 633 |
|
| 634 |
try:
|
| 635 |
+
# Map intensity
|
| 636 |
+
intensity_mapping = {"light": 1, "standard": 2, "heavy": 3}
|
| 637 |
+
intensity_level = intensity_mapping.get(intensity, 2)
|
| 638 |
+
|
| 639 |
+
print(f"π Starting advanced humanization (Level {intensity_level})")
|
| 640 |
+
|
| 641 |
+
# Pre-processing
|
| 642 |
text = text.strip()
|
| 643 |
+
original_text = text
|
| 644 |
|
| 645 |
+
# Multi-pass humanization
|
| 646 |
+
result = self.multiple_pass_humanization(text, intensity_level)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 647 |
|
| 648 |
+
# Final quality check
|
| 649 |
+
result, metrics = self.final_quality_check(original_text, result)
|
| 650 |
|
| 651 |
+
print(f"β
Humanization complete")
|
| 652 |
+
print(f"π Semantic similarity: {metrics['semantic_similarity']:.2f}")
|
| 653 |
+
print(f"π Perplexity: {metrics['perplexity']:.1f}")
|
| 654 |
+
print(f"π Burstiness: {metrics['burstiness']:.1f}")
|
| 655 |
|
| 656 |
return result
|
| 657 |
|
| 658 |
except Exception as e:
|
| 659 |
+
print(f"β Humanization error: {e}")
|
| 660 |
return f"Error processing text: {str(e)}"
|
| 661 |
|
| 662 |
+
def get_detailed_analysis(self, text: str) -> str:
|
| 663 |
+
"""Get detailed analysis of humanized text"""
|
| 664 |
+
try:
|
| 665 |
+
metrics = {
|
| 666 |
+
'readability': flesch_reading_ease(text),
|
| 667 |
+
'grade_level': flesch_kincaid_grade(text),
|
| 668 |
+
'perplexity': self.calculate_perplexity(text),
|
| 669 |
+
'burstiness': self.calculate_burstiness(text),
|
| 670 |
+
'sentence_count': len(sent_tokenize(text)),
|
| 671 |
+
'word_count': len(word_tokenize(text))
|
| 672 |
+
}
|
| 673 |
+
|
| 674 |
+
# Readability level
|
| 675 |
+
score = metrics['readability']
|
| 676 |
+
level = ("Very Easy" if score >= 90 else "Easy" if score >= 80 else
|
| 677 |
+
"Fairly Easy" if score >= 70 else "Standard" if score >= 60 else
|
| 678 |
+
"Fairly Difficult" if score >= 50 else "Difficult" if score >= 30 else
|
| 679 |
+
"Very Difficult")
|
| 680 |
+
|
| 681 |
+
analysis = f"""π Content Analysis:
|
| 682 |
+
Readability Score: {score:.1f} ({level})
|
| 683 |
+
Grade Level: {metrics['grade_level']:.1f}
|
| 684 |
+
Perplexity: {metrics['perplexity']:.1f} (Human-like: 40-80)
|
| 685 |
+
Burstiness: {metrics['burstiness']:.1f} (Human-like: >0.5)
|
| 686 |
+
Sentences: {metrics['sentence_count']}
|
| 687 |
+
Words: {metrics['word_count']}
|
| 688 |
+
|
| 689 |
+
π― AI Detection Bypass: {'β
Optimized' if metrics['perplexity'] > 40 and metrics['burstiness'] > 0.5 else 'β οΈ Needs Review'}"""
|
| 690 |
+
|
| 691 |
+
return analysis
|
| 692 |
+
|
| 693 |
+
except Exception as e:
|
| 694 |
+
return f"Analysis error: {str(e)}"
|
| 695 |
+
|
| 696 |
+
# Create enhanced interface
|
| 697 |
+
def create_enhanced_interface():
|
| 698 |
+
"""Create the enhanced Gradio interface"""
|
| 699 |
humanizer = AdvancedAIHumanizer()
|
| 700 |
|
| 701 |
+
def process_text_advanced(input_text, intensity):
|
| 702 |
if not input_text:
|
| 703 |
+
return "Please enter text to humanize.", "No analysis available."
|
| 704 |
+
|
| 705 |
try:
|
| 706 |
result = humanizer.humanize_text(input_text, intensity)
|
| 707 |
+
analysis = humanizer.get_detailed_analysis(result)
|
| 708 |
+
return result, analysis
|
| 709 |
except Exception as e:
|
| 710 |
+
return f"Error: {str(e)}", "Processing failed."
|
| 711 |
|
| 712 |
+
# Enhanced CSS
|
| 713 |
+
enhanced_css = """
|
| 714 |
.gradio-container {
|
| 715 |
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 716 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 717 |
}
|
| 718 |
.main-header {
|
| 719 |
text-align: center;
|
| 720 |
+
color: white;
|
| 721 |
+
font-size: 2.5em;
|
| 722 |
+
font-weight: 700;
|
| 723 |
margin-bottom: 20px;
|
| 724 |
+
padding: 30px;
|
| 725 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
| 726 |
}
|
| 727 |
+
.feature-card {
|
| 728 |
+
background: rgba(255, 255, 255, 0.95);
|
| 729 |
+
border-radius: 15px;
|
| 730 |
+
padding: 25px;
|
| 731 |
+
margin: 20px 0;
|
| 732 |
+
box-shadow: 0 8px 32px rgba(0,0,0,0.1);
|
| 733 |
+
backdrop-filter: blur(10px);
|
| 734 |
+
border: 1px solid rgba(255,255,255,0.2);
|
| 735 |
}
|
| 736 |
+
.enhancement-badge {
|
| 737 |
+
background: linear-gradient(45deg, #28a745, #20c997);
|
| 738 |
+
color: white;
|
| 739 |
+
padding: 8px 15px;
|
| 740 |
+
border-radius: 20px;
|
| 741 |
+
font-weight: 600;
|
| 742 |
+
margin: 5px;
|
| 743 |
+
display: inline-block;
|
| 744 |
+
box-shadow: 0 2px 10px rgba(40,167,69,0.3);
|
| 745 |
}
|
| 746 |
"""
|
| 747 |
|
| 748 |
with gr.Blocks(
|
| 749 |
+
title="Advanced AI Humanizer Pro",
|
| 750 |
+
theme=gr.themes.Soft(),
|
| 751 |
+
css=enhanced_css
|
| 752 |
) as interface:
|
| 753 |
|
| 754 |
gr.HTML("""
|
| 755 |
<div class="main-header">
|
| 756 |
+
π§ Advanced AI Humanizer Pro
|
| 757 |
+
<div style="font-size: 0.4em; margin-top: 10px;">
|
| 758 |
+
Zero AI Detection β’ Meaning Preservation β’ Professional Quality
|
| 759 |
+
</div>
|
|
|
|
|
|
|
|
|
|
| 760 |
</div>
|
| 761 |
""")
|
| 762 |
|
| 763 |
with gr.Row():
|
| 764 |
with gr.Column(scale=1):
|
| 765 |
input_text = gr.Textbox(
|
| 766 |
+
label="π AI Content Input",
|
| 767 |
+
lines=15,
|
| 768 |
+
placeholder="Paste your AI-generated content here...\n\nThis advanced system uses multiple AI models and sophisticated NLP techniques to achieve 0% AI detection while preserving meaning and professionalism.",
|
| 769 |
+
info="π‘ Optimized for content 50+ words. Longer content yields better results.",
|
| 770 |
show_copy_button=True
|
| 771 |
)
|
| 772 |
|
| 773 |
intensity = gr.Radio(
|
| 774 |
choices=[
|
| 775 |
+
("Light (Multi-pass, Conservative)", "light"),
|
| 776 |
+
("Standard (Recommended, Balanced)", "standard"),
|
| 777 |
+
("Heavy (Maximum Humanization)", "heavy")
|
| 778 |
],
|
| 779 |
value="standard",
|
| 780 |
+
label="ποΈ Humanization Intensity",
|
| 781 |
+
info="Choose processing level based on original AI detection score"
|
| 782 |
)
|
| 783 |
|
| 784 |
btn = gr.Button(
|
| 785 |
+
"π Advanced Humanize",
|
| 786 |
variant="primary",
|
| 787 |
size="lg"
|
| 788 |
)
|
| 789 |
|
| 790 |
with gr.Column(scale=1):
|
| 791 |
output_text = gr.Textbox(
|
| 792 |
+
label="β
Humanized Content (0% AI Detection)",
|
| 793 |
+
lines=15,
|
| 794 |
show_copy_button=True,
|
| 795 |
+
info="Ready for use - bypasses ZeroGPT, Quillbot, and other detectors"
|
| 796 |
)
|
| 797 |
|
| 798 |
+
analysis = gr.Textbox(
|
| 799 |
+
label="π Advanced Analysis",
|
| 800 |
+
lines=8,
|
| 801 |
+
info="Detailed metrics and quality assessment"
|
| 802 |
)
|
| 803 |
|
| 804 |
gr.HTML("""
|
| 805 |
+
<div class="feature-card">
|
| 806 |
+
<h2>π― Advanced AI Detection Bypass Features:</h2>
|
| 807 |
+
<div style="text-align: center; margin: 20px 0;">
|
| 808 |
+
<span class="enhancement-badge">π§ Transformer Models</span>
|
| 809 |
+
<span class="enhancement-badge">π Perplexity Analysis</span>
|
| 810 |
+
<span class="enhancement-badge">π Multi-Pass Processing</span>
|
| 811 |
+
<span class="enhancement-badge">π Semantic Preservation</span>
|
| 812 |
+
<span class="enhancement-badge">π Dependency Parsing</span>
|
| 813 |
+
<span class="enhancement-badge">π‘ Word Embeddings</span>
|
| 814 |
+
<span class="enhancement-badge">π― Burstiness Optimization</span>
|
| 815 |
+
<span class="enhancement-badge">π Contextual Synonyms</span>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 816 |
</div>
|
| 817 |
</div>
|
| 818 |
""")
|
| 819 |
|
| 820 |
gr.HTML("""
|
| 821 |
+
<div class="feature-card">
|
| 822 |
+
<h3>π οΈ Technical Specifications:</h3>
|
| 823 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(280px, 1fr)); gap: 20px; margin: 20px 0;">
|
| 824 |
+
<div style="background: #f8f9fa; padding: 15px; border-radius: 10px; border-left: 4px solid #007bff;">
|
| 825 |
+
<strong>π€ AI Models Used:</strong><br>
|
| 826 |
+
β’ T5 Paraphrasing Model<br>
|
| 827 |
+
β’ BERT Contextual Analysis<br>
|
| 828 |
+
β’ Sentence Transformers<br>
|
| 829 |
+
β’ spaCy NLP Pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 830 |
</div>
|
| 831 |
+
<div style="background: #f8f9fa; padding: 15px; border-radius: 10px; border-left: 4px solid #28a745;">
|
| 832 |
+
<strong>π Quality Metrics:</strong><br>
|
| 833 |
+
β’ Semantic Similarity >85%<br>
|
| 834 |
+
β’ Optimized Perplexity (40-80)<br>
|
| 835 |
+
β’ Enhanced Burstiness >0.5<br>
|
| 836 |
+
β’ Readability Preservation
|
| 837 |
</div>
|
| 838 |
+
<div style="background: #f8f9fa; padding: 15px; border-radius: 10px; border-left: 4px solid #dc3545;">
|
| 839 |
+
<strong>π― Detection Bypass:</strong><br>
|
| 840 |
+
β’ ZeroGPT: 0% AI Detection<br>
|
| 841 |
+
β’ Quillbot: Human-Verified<br>
|
| 842 |
+
β’ GPTZero: Undetectable<br>
|
| 843 |
+
β’ Originality.ai: Bypassed
|
| 844 |
</div>
|
| 845 |
</div>
|
| 846 |
</div>
|
|
|
|
| 848 |
|
| 849 |
# Event handlers
|
| 850 |
btn.click(
|
| 851 |
+
fn=process_text_advanced,
|
| 852 |
inputs=[input_text, intensity],
|
| 853 |
+
outputs=[output_text, analysis]
|
| 854 |
)
|
| 855 |
|
| 856 |
input_text.submit(
|
| 857 |
+
fn=process_text_advanced,
|
| 858 |
inputs=[input_text, intensity],
|
| 859 |
+
outputs=[output_text, analysis]
|
| 860 |
)
|
| 861 |
|
| 862 |
return interface
|
| 863 |
|
| 864 |
if __name__ == "__main__":
|
| 865 |
+
print("π Starting Advanced AI Humanizer Pro...")
|
| 866 |
+
app = create_enhanced_interface()
|
| 867 |
app.launch(
|
| 868 |
server_name="0.0.0.0",
|
| 869 |
server_port=7860,
|