Update app.py
Browse files
app.py
CHANGED
|
@@ -38,30 +38,52 @@ def load_model():
|
|
| 38 |
logger.error(f"Failed to load model: {e}")
|
| 39 |
return False
|
| 40 |
|
| 41 |
-
def get_card_info(hub_id: str) -> Tuple[str, str]:
|
| 42 |
"""Get card information from a Hugging Face hub_id."""
|
| 43 |
model_exists = False
|
| 44 |
dataset_exists = False
|
| 45 |
model_text = None
|
| 46 |
dataset_text = None
|
| 47 |
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
# Handle different cases
|
| 67 |
if model_exists and dataset_exists:
|
|
@@ -115,12 +137,12 @@ def generate_summary(card_text: str, card_type: str) -> str:
|
|
| 115 |
"""Cached wrapper for generate_summary with TTL."""
|
| 116 |
return _generate_summary_gpu(card_text, card_type)
|
| 117 |
|
| 118 |
-
def summarize(hub_id: str = "") -> str:
|
| 119 |
"""Interface function for Gradio. Returns JSON format."""
|
| 120 |
try:
|
| 121 |
if hub_id:
|
| 122 |
-
# Fetch
|
| 123 |
-
card_type, card_text = get_card_info(hub_id)
|
| 124 |
|
| 125 |
if card_type == "both":
|
| 126 |
model_text, dataset_text = card_text
|
|
@@ -148,7 +170,15 @@ def summarize(hub_id: str = "") -> str:
|
|
| 148 |
def create_interface():
|
| 149 |
interface = gr.Interface(
|
| 150 |
fn=summarize,
|
| 151 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
outputs=gr.JSON(label="Output"),
|
| 153 |
title="Hugging Face Hub TLDR Generator",
|
| 154 |
description="Generate concise summaries of model and dataset cards from the Hugging Face Hub.",
|
|
@@ -160,4 +190,4 @@ if __name__ == "__main__":
|
|
| 160 |
interface = create_interface()
|
| 161 |
interface.launch()
|
| 162 |
else:
|
| 163 |
-
print("Failed to load model. Please check the logs for details.")
|
|
|
|
| 38 |
logger.error(f"Failed to load model: {e}")
|
| 39 |
return False
|
| 40 |
|
| 41 |
+
def get_card_info(hub_id: str, repo_type: str = "auto") -> Tuple[str, str]:
|
| 42 |
"""Get card information from a Hugging Face hub_id."""
|
| 43 |
model_exists = False
|
| 44 |
dataset_exists = False
|
| 45 |
model_text = None
|
| 46 |
dataset_text = None
|
| 47 |
|
| 48 |
+
# Handle based on repo type
|
| 49 |
+
if repo_type == "auto":
|
| 50 |
+
# Try getting model card
|
| 51 |
+
try:
|
| 52 |
+
info = model_info(hub_id)
|
| 53 |
+
card = ModelCard.load(hub_id)
|
| 54 |
+
model_exists = True
|
| 55 |
+
model_text = card.text
|
| 56 |
+
except Exception as e:
|
| 57 |
+
logger.debug(f"No model card found for {hub_id}: {e}")
|
| 58 |
+
|
| 59 |
+
# Try getting dataset card
|
| 60 |
+
try:
|
| 61 |
+
info = dataset_info(hub_id)
|
| 62 |
+
card = DatasetCard.load(hub_id)
|
| 63 |
+
dataset_exists = True
|
| 64 |
+
dataset_text = card.text
|
| 65 |
+
except Exception as e:
|
| 66 |
+
logger.debug(f"No dataset card found for {hub_id}: {e}")
|
| 67 |
+
elif repo_type == "model":
|
| 68 |
+
try:
|
| 69 |
+
info = model_info(hub_id)
|
| 70 |
+
card = ModelCard.load(hub_id)
|
| 71 |
+
model_exists = True
|
| 72 |
+
model_text = card.text
|
| 73 |
+
except Exception as e:
|
| 74 |
+
logger.error(f"Failed to get model card for {hub_id}: {e}")
|
| 75 |
+
raise ValueError(f"Could not find model with id {hub_id}")
|
| 76 |
+
elif repo_type == "dataset":
|
| 77 |
+
try:
|
| 78 |
+
info = dataset_info(hub_id)
|
| 79 |
+
card = DatasetCard.load(hub_id)
|
| 80 |
+
dataset_exists = True
|
| 81 |
+
dataset_text = card.text
|
| 82 |
+
except Exception as e:
|
| 83 |
+
logger.error(f"Failed to get dataset card for {hub_id}: {e}")
|
| 84 |
+
raise ValueError(f"Could not find dataset with id {hub_id}")
|
| 85 |
+
else:
|
| 86 |
+
raise ValueError(f"Invalid repo_type: {repo_type}. Must be 'auto', 'model', or 'dataset'")
|
| 87 |
|
| 88 |
# Handle different cases
|
| 89 |
if model_exists and dataset_exists:
|
|
|
|
| 137 |
"""Cached wrapper for generate_summary with TTL."""
|
| 138 |
return _generate_summary_gpu(card_text, card_type)
|
| 139 |
|
| 140 |
+
def summarize(hub_id: str = "", repo_type: str = "auto") -> str:
|
| 141 |
"""Interface function for Gradio. Returns JSON format."""
|
| 142 |
try:
|
| 143 |
if hub_id:
|
| 144 |
+
# Fetch card information with specified repo_type
|
| 145 |
+
card_type, card_text = get_card_info(hub_id, repo_type)
|
| 146 |
|
| 147 |
if card_type == "both":
|
| 148 |
model_text, dataset_text = card_text
|
|
|
|
| 170 |
def create_interface():
|
| 171 |
interface = gr.Interface(
|
| 172 |
fn=summarize,
|
| 173 |
+
inputs=[
|
| 174 |
+
gr.Textbox(label="Hub ID", placeholder="e.g., huggingface/llama-7b"),
|
| 175 |
+
gr.Radio(
|
| 176 |
+
choices=["auto", "model", "dataset"],
|
| 177 |
+
value="auto",
|
| 178 |
+
label="Repository Type",
|
| 179 |
+
info="Choose 'auto' to detect automatically, or specify the repository type"
|
| 180 |
+
)
|
| 181 |
+
],
|
| 182 |
outputs=gr.JSON(label="Output"),
|
| 183 |
title="Hugging Face Hub TLDR Generator",
|
| 184 |
description="Generate concise summaries of model and dataset cards from the Hugging Face Hub.",
|
|
|
|
| 190 |
interface = create_interface()
|
| 191 |
interface.launch()
|
| 192 |
else:
|
| 193 |
+
print("Failed to load model. Please check the logs for details.")
|