Spaces:
Running
Running
fahmiaziz98
commited on
Commit
·
9847166
1
Parent(s):
3b88f19
init README
Browse files- API.md +729 -0
- README.md +285 -30
- core/__init__.py +0 -3
- core/embedding.py +0 -81
- core/model_manager.py +0 -229
- core/sparse.py +0 -123
- models/__init__.py +0 -20
- models/model.py +0 -110
API.md
ADDED
|
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 📖 Unified Embedding API Documentation
|
| 2 |
+
|
| 3 |
+
Complete API reference for the Unified Embedding API v3.0.0.
|
| 4 |
+
|
| 5 |
+
**Features:** Dense Embeddings, Sparse Embeddings, and Document Reranking
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## 🌐 Base URL
|
| 10 |
+
|
| 11 |
+
```
|
| 12 |
+
https://fahmiaziz-api-embedding.hf.space
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
For local development:
|
| 16 |
+
```
|
| 17 |
+
http://localhost:7860
|
| 18 |
+
```
|
| 19 |
+
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
## 🔑 Authentication
|
| 23 |
+
|
| 24 |
+
**Currently no authentication required.**
|
| 25 |
+
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
+
## 📊 Endpoints Overview
|
| 29 |
+
|
| 30 |
+
| Endpoint | Method | Description |
|
| 31 |
+
|----------|--------|-------------|
|
| 32 |
+
| `/api/v1/embeddings/embed` | POST | Generate document embeddings |
|
| 33 |
+
| `/api/v1/embeddings/query` | POST | Generate query embeddings |
|
| 34 |
+
| `/api/v1/rerank` | POST | Rerank documents by relevance |
|
| 35 |
+
| `/api/v1/models` | GET | List available models |
|
| 36 |
+
| `/api/v1/models/{model_id}` | GET | Get model information |
|
| 37 |
+
| `/health` | GET | Health check |
|
| 38 |
+
| `/` | GET | API information |
|
| 39 |
+
|
| 40 |
+
---
|
| 41 |
+
|
| 42 |
+
## 🚀 Embedding Endpoints
|
| 43 |
+
|
| 44 |
+
### 1. Generate Document Embeddings
|
| 45 |
+
|
| 46 |
+
**`POST /api/v1/embeddings/embed`**
|
| 47 |
+
|
| 48 |
+
Generate embeddings for document texts. Supports both single and batch processing.
|
| 49 |
+
|
| 50 |
+
#### Request Body
|
| 51 |
+
|
| 52 |
+
```json
|
| 53 |
+
{
|
| 54 |
+
"texts": ["string"], // Required: List of texts (1-100 items)
|
| 55 |
+
"model_id": "string", // Required: Model identifier
|
| 56 |
+
"prompt": "string", // Optional: Instruction prompt
|
| 57 |
+
"options": { // Optional: Embedding parameters
|
| 58 |
+
"normalize_embeddings": true,
|
| 59 |
+
"batch_size": 32,
|
| 60 |
+
"max_length": 512,
|
| 61 |
+
"show_progress_bar": false
|
| 62 |
+
}
|
| 63 |
+
}
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
#### Parameters
|
| 67 |
+
|
| 68 |
+
| Field | Type | Required | Description |
|
| 69 |
+
|-------|------|----------|-------------|
|
| 70 |
+
| `texts` | array[string] | ✅ Yes | List of texts to embed (min: 1, max: 100) |
|
| 71 |
+
| `model_id` | string | ✅ Yes | Model identifier (e.g., "qwen3-0.6b") |
|
| 72 |
+
| `prompt` | string | ❌ No | Instruction prompt for the model |
|
| 73 |
+
| `options` | object | ❌ No | Additional embedding parameters |
|
| 74 |
+
|
| 75 |
+
#### Options Parameters
|
| 76 |
+
|
| 77 |
+
| Field | Type | Default | Description |
|
| 78 |
+
|-------|------|---------|-------------|
|
| 79 |
+
| `normalize_embeddings` | boolean | false | L2 normalize output embeddings |
|
| 80 |
+
| `batch_size` | integer | 32 | Processing batch size (1-256) |
|
| 81 |
+
| `max_length` | integer | 512 | Maximum sequence length (1-8192) |
|
| 82 |
+
| `show_progress_bar` | boolean | false | Display progress during encoding |
|
| 83 |
+
| `precision` | string | float32 | Precision ("float32", "int8", "binary") |
|
| 84 |
+
|
| 85 |
+
#### Response - Single Text (Dense)
|
| 86 |
+
|
| 87 |
+
```json
|
| 88 |
+
{
|
| 89 |
+
"embedding": [0.123, -0.456, 0.789, ...],
|
| 90 |
+
"dimension": 768,
|
| 91 |
+
"model_id": "qwen3-0.6b",
|
| 92 |
+
"processing_time": 0.0523
|
| 93 |
+
}
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
#### Response - Batch (Dense)
|
| 97 |
+
|
| 98 |
+
```json
|
| 99 |
+
{
|
| 100 |
+
"embeddings": [
|
| 101 |
+
[0.123, -0.456, ...],
|
| 102 |
+
[0.234, 0.567, ...],
|
| 103 |
+
[0.345, -0.678, ...]
|
| 104 |
+
],
|
| 105 |
+
"dimension": 768,
|
| 106 |
+
"count": 3,
|
| 107 |
+
"model_id": "qwen3-0.6b",
|
| 108 |
+
"processing_time": 0.1245
|
| 109 |
+
}
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
#### Response - Single Text (Sparse)
|
| 113 |
+
|
| 114 |
+
```json
|
| 115 |
+
{
|
| 116 |
+
"sparse_embedding": {
|
| 117 |
+
"text": "Hello world",
|
| 118 |
+
"indices": [10, 25, 42, 100],
|
| 119 |
+
"values": [0.85, 0.62, 0.91, 0.73]
|
| 120 |
+
},
|
| 121 |
+
"model_id": "splade-pp-v2",
|
| 122 |
+
"processing_time": 0.0421
|
| 123 |
+
}
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
#### Response - Batch (Sparse)
|
| 127 |
+
|
| 128 |
+
```json
|
| 129 |
+
{
|
| 130 |
+
"embeddings": [
|
| 131 |
+
{
|
| 132 |
+
"text": "First doc",
|
| 133 |
+
"indices": [10, 25, 42],
|
| 134 |
+
"values": [0.85, 0.62, 0.91]
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"text": "Second doc",
|
| 138 |
+
"indices": [15, 30, 50],
|
| 139 |
+
"values": [0.73, 0.88, 0.65]
|
| 140 |
+
}
|
| 141 |
+
],
|
| 142 |
+
"count": 2,
|
| 143 |
+
"model_id": "splade-pp-v2",
|
| 144 |
+
"processing_time": 0.0892
|
| 145 |
+
}
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
#### Examples
|
| 149 |
+
|
| 150 |
+
**Single Text (Dense Model):**
|
| 151 |
+
```bash
|
| 152 |
+
curl -X 'POST' \
|
| 153 |
+
'https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/embed' \
|
| 154 |
+
-H 'accept: application/json' \
|
| 155 |
+
-H 'Content-Type: application/json' \
|
| 156 |
+
-d '{
|
| 157 |
+
"texts": ["What is artificial intelligence?"],
|
| 158 |
+
"model_id": "qwen3-0.6b"
|
| 159 |
+
}'
|
| 160 |
+
```
|
| 161 |
+
|
| 162 |
+
**Single Text (Sparse Model):**
|
| 163 |
+
```bash
|
| 164 |
+
curl -X 'POST' \
|
| 165 |
+
'https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/embed' \
|
| 166 |
+
-H 'accept: application/json' \
|
| 167 |
+
-H 'Content-Type: application/json' \
|
| 168 |
+
-d '{
|
| 169 |
+
"texts": ["Hello world"],
|
| 170 |
+
"model_id": "splade-pp-v2"
|
| 171 |
+
}'
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
**Batch (with Options):**
|
| 175 |
+
```bash
|
| 176 |
+
curl -X 'POST' \
|
| 177 |
+
'https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/embed' \
|
| 178 |
+
-H 'accept: application/json' \
|
| 179 |
+
-H 'Content-Type: application/json' \
|
| 180 |
+
-d '{
|
| 181 |
+
"texts": [
|
| 182 |
+
"First document to embed",
|
| 183 |
+
"Second document to embed",
|
| 184 |
+
"Third document to embed"
|
| 185 |
+
],
|
| 186 |
+
"model_id": "qwen3-0.6b",
|
| 187 |
+
"options": {
|
| 188 |
+
"normalize_embeddings": true,
|
| 189 |
+
"batch_size": 32
|
| 190 |
+
}
|
| 191 |
+
}'
|
| 192 |
+
```
|
| 193 |
+
|
| 194 |
+
**Python Example:**
|
| 195 |
+
```python
|
| 196 |
+
import requests
|
| 197 |
+
|
| 198 |
+
url = "https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/embed"
|
| 199 |
+
|
| 200 |
+
payload = {
|
| 201 |
+
"texts": ["Hello world"],
|
| 202 |
+
"model_id": "qwen3-0.6b"
|
| 203 |
+
}
|
| 204 |
+
|
| 205 |
+
response = requests.post(url, json=payload)
|
| 206 |
+
data = response.json()
|
| 207 |
+
|
| 208 |
+
print(f"Embedding dimension: {data['dimension']}")
|
| 209 |
+
print(f"Processing time: {data['processing_time']:.3f}s")
|
| 210 |
+
```
|
| 211 |
+
|
| 212 |
+
---
|
| 213 |
+
|
| 214 |
+
### 2. Generate Query Embeddings
|
| 215 |
+
|
| 216 |
+
**`POST /api/v1/embeddings/query`**
|
| 217 |
+
|
| 218 |
+
Generate embeddings optimized for search queries. Some models differentiate between query and document embeddings.
|
| 219 |
+
|
| 220 |
+
#### Request Body
|
| 221 |
+
|
| 222 |
+
Same as `/embed` endpoint.
|
| 223 |
+
|
| 224 |
+
```json
|
| 225 |
+
{
|
| 226 |
+
"texts": ["string"],
|
| 227 |
+
"model_id": "string",
|
| 228 |
+
"prompt": "string",
|
| 229 |
+
"options": {}
|
| 230 |
+
}
|
| 231 |
+
```
|
| 232 |
+
|
| 233 |
+
#### Response
|
| 234 |
+
|
| 235 |
+
Same format as `/embed` endpoint.
|
| 236 |
+
|
| 237 |
+
#### Examples
|
| 238 |
+
|
| 239 |
+
**Single Query:**
|
| 240 |
+
```bash
|
| 241 |
+
curl -X 'POST' \
|
| 242 |
+
'https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/query' \
|
| 243 |
+
-H 'accept: application/json' \
|
| 244 |
+
-H 'Content-Type: application/json' \
|
| 245 |
+
-d '{
|
| 246 |
+
"texts": ["What is machine learning?"],
|
| 247 |
+
"model_id": "qwen3-0.6b",
|
| 248 |
+
"prompt": "Represent this query for retrieval",
|
| 249 |
+
"options": {
|
| 250 |
+
"normalize_embeddings": true
|
| 251 |
+
}
|
| 252 |
+
}'
|
| 253 |
+
```
|
| 254 |
+
|
| 255 |
+
**Batch Queries:**
|
| 256 |
+
```bash
|
| 257 |
+
curl -X 'POST' \
|
| 258 |
+
'https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/query' \
|
| 259 |
+
-H 'accept: application/json' \
|
| 260 |
+
-H 'Content-Type: application/json' \
|
| 261 |
+
-d '{
|
| 262 |
+
"texts": [
|
| 263 |
+
"First query",
|
| 264 |
+
"Second query",
|
| 265 |
+
"Third query"
|
| 266 |
+
],
|
| 267 |
+
"model_id": "qwen3-0.6b"
|
| 268 |
+
}'
|
| 269 |
+
```
|
| 270 |
+
|
| 271 |
+
**Python Example:**
|
| 272 |
+
```python
|
| 273 |
+
import requests
|
| 274 |
+
|
| 275 |
+
url = "https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/query"
|
| 276 |
+
|
| 277 |
+
payload = {
|
| 278 |
+
"texts": ["What is AI?"],
|
| 279 |
+
"model_id": "qwen3-0.6b",
|
| 280 |
+
"options": {
|
| 281 |
+
"normalize_embeddings": True
|
| 282 |
+
}
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
response = requests.post(url, json=payload)
|
| 286 |
+
embedding = response.json()["embedding"]
|
| 287 |
+
```
|
| 288 |
+
|
| 289 |
+
---
|
| 290 |
+
|
| 291 |
+
### 3. Rerank Documents
|
| 292 |
+
|
| 293 |
+
**`POST /api/v1/rerank`**
|
| 294 |
+
|
| 295 |
+
Rerank documents based on their relevance to a query using CrossEncoder models.
|
| 296 |
+
|
| 297 |
+
#### Request Body
|
| 298 |
+
|
| 299 |
+
```json
|
| 300 |
+
{
|
| 301 |
+
"query": "string", // Required: Search query
|
| 302 |
+
"documents": ["string"], // Required: List of documents (min: 1)
|
| 303 |
+
"model_id": "string", // Required: Reranking model identifier
|
| 304 |
+
"top_k": integer, // Required: Number of top results to return
|
| 305 |
+
}
|
| 306 |
+
```
|
| 307 |
+
|
| 308 |
+
#### Parameters
|
| 309 |
+
|
| 310 |
+
| Field | Type | Required | Description |
|
| 311 |
+
|-------|------|----------|-------------|
|
| 312 |
+
| `query` | string | ✅ Yes | Search query text |
|
| 313 |
+
| `documents` | array[string] | ✅ Yes | List of documents to rerank (min: 1) |
|
| 314 |
+
| `model_id` | string | ✅ Yes | Reranking model identifier |
|
| 315 |
+
| `top_k` | integer | ✅ Yes | Maximum number of results to return |
|
| 316 |
+
|
| 317 |
+
#### Response
|
| 318 |
+
|
| 319 |
+
```json
|
| 320 |
+
{
|
| 321 |
+
"model_id": "jina-reranker-v3",
|
| 322 |
+
"processing_time": 0.56,
|
| 323 |
+
"query": "Python for data science",
|
| 324 |
+
"results": [
|
| 325 |
+
{
|
| 326 |
+
"index": 0,
|
| 327 |
+
"score": 0.95,
|
| 328 |
+
"text": "Python is excellent for data science"
|
| 329 |
+
},
|
| 330 |
+
{
|
| 331 |
+
"index": 2,
|
| 332 |
+
"score": 0.73,
|
| 333 |
+
"text": "R is also used in data science"
|
| 334 |
+
}
|
| 335 |
+
]
|
| 336 |
+
}
|
| 337 |
+
```
|
| 338 |
+
|
| 339 |
+
#### Response Fields
|
| 340 |
+
|
| 341 |
+
| Field | Type | Description |
|
| 342 |
+
|-------|------|-------------|
|
| 343 |
+
| `model_id` | string | Model identifier used |
|
| 344 |
+
| `processing_time` | float | Processing time in seconds |
|
| 345 |
+
| `query` | string | Original search query |
|
| 346 |
+
| `results` | array | Reranked documents with scores |
|
| 347 |
+
| `results[].index` | integer | Original index in input documents |
|
| 348 |
+
| `results[].score` | float | Relevance score (0-1, normalized) |
|
| 349 |
+
| `results[].text` | string | Document text |
|
| 350 |
+
|
| 351 |
+
#### Examples
|
| 352 |
+
|
| 353 |
+
**Basic Reranking:**
|
| 354 |
+
```bash
|
| 355 |
+
curl -X 'POST' \
|
| 356 |
+
'https://fahmiaziz-api-embedding.hf.space/api/v1/rerank' \
|
| 357 |
+
-H 'Content-Type: application/json' \
|
| 358 |
+
-d '{
|
| 359 |
+
"query": "Python for data science",
|
| 360 |
+
"documents": [
|
| 361 |
+
"Python is great for data science",
|
| 362 |
+
"Java is used for enterprise applications",
|
| 363 |
+
"R is also used in data science",
|
| 364 |
+
"JavaScript is for web development"
|
| 365 |
+
],
|
| 366 |
+
"model_id": "jina-reranker-v3",
|
| 367 |
+
"top_k": 2
|
| 368 |
+
}'
|
| 369 |
+
```
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
**Python Example:**
|
| 373 |
+
```python
|
| 374 |
+
import requests
|
| 375 |
+
|
| 376 |
+
url = "https://fahmiaziz-api-embedding.hf.space/api/v1/rerank"
|
| 377 |
+
|
| 378 |
+
payload = {
|
| 379 |
+
"query": "best programming language for beginners",
|
| 380 |
+
"documents": [
|
| 381 |
+
"Python is beginner-friendly with simple syntax",
|
| 382 |
+
"C++ is powerful but complex for beginners",
|
| 383 |
+
"JavaScript is essential for web development",
|
| 384 |
+
"Rust offers memory safety but steep learning curve"
|
| 385 |
+
],
|
| 386 |
+
"model_id": "jina-reranker-v3",
|
| 387 |
+
"top_k": 2
|
| 388 |
+
}
|
| 389 |
+
|
| 390 |
+
response = requests.post(url, json=payload)
|
| 391 |
+
data = response.json()
|
| 392 |
+
|
| 393 |
+
print(f"Top result: {data['results'][0]['text']}")
|
| 394 |
+
print(f"Score: {data['results'][0]['score']:.3f}")
|
| 395 |
+
```
|
| 396 |
+
|
| 397 |
+
**JavaScript Example:**
|
| 398 |
+
```javascript
|
| 399 |
+
const url = "https://fahmiaziz-api-embedding.hf.space/api/v1/rerank";
|
| 400 |
+
|
| 401 |
+
const response = await fetch(url, {
|
| 402 |
+
method: "POST",
|
| 403 |
+
headers: { "Content-Type": "application/json" },
|
| 404 |
+
body: JSON.stringify({
|
| 405 |
+
query: "AI applications",
|
| 406 |
+
documents: [
|
| 407 |
+
"Computer vision for image recognition",
|
| 408 |
+
"Recipe for chocolate cake",
|
| 409 |
+
"Natural language processing for chatbots",
|
| 410 |
+
"Travel guide to Paris"
|
| 411 |
+
],
|
| 412 |
+
model_id: "jina-reranker-v3",
|
| 413 |
+
top_k: 2
|
| 414 |
+
})
|
| 415 |
+
});
|
| 416 |
+
|
| 417 |
+
const { results } = await response.json();
|
| 418 |
+
console.log("Top results:", results);
|
| 419 |
+
```
|
| 420 |
+
|
| 421 |
+
---
|
| 422 |
+
|
| 423 |
+
## 🤖 Model Management
|
| 424 |
+
|
| 425 |
+
### 3. List Available Models
|
| 426 |
+
|
| 427 |
+
**`GET /api/v1/models`**
|
| 428 |
+
|
| 429 |
+
Get a list of all available embedding models.
|
| 430 |
+
|
| 431 |
+
#### Response
|
| 432 |
+
|
| 433 |
+
```json
|
| 434 |
+
{
|
| 435 |
+
"models": [
|
| 436 |
+
{
|
| 437 |
+
"id": "qwen3-0.6b",
|
| 438 |
+
"name": "Qwen/Qwen3-Embedding-0.6B",
|
| 439 |
+
"type": "embeddings",
|
| 440 |
+
"loaded": true,
|
| 441 |
+
"repository": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B"
|
| 442 |
+
},
|
| 443 |
+
{
|
| 444 |
+
"id": "splade-pp-v2",
|
| 445 |
+
"name": "prithivida/Splade_PP_en_v2",
|
| 446 |
+
"type": "sparse-embeddings",
|
| 447 |
+
"loaded": true,
|
| 448 |
+
"repository": "https://huggingface.co/prithivida/Splade_PP_en_v2"
|
| 449 |
+
}
|
| 450 |
+
],
|
| 451 |
+
"total": 2
|
| 452 |
+
}
|
| 453 |
+
```
|
| 454 |
+
|
| 455 |
+
#### Example
|
| 456 |
+
|
| 457 |
+
```bash
|
| 458 |
+
curl -X 'GET' \
|
| 459 |
+
'https://fahmiaziz-api-embedding.hf.space/api/v1/models' \
|
| 460 |
+
-H 'accept: application/json'
|
| 461 |
+
```
|
| 462 |
+
|
| 463 |
+
---
|
| 464 |
+
|
| 465 |
+
### 4. Get Model Information
|
| 466 |
+
|
| 467 |
+
**`GET /api/v1/models/{model_id}`**
|
| 468 |
+
|
| 469 |
+
Get detailed information about a specific model.
|
| 470 |
+
|
| 471 |
+
#### Parameters
|
| 472 |
+
|
| 473 |
+
| Parameter | Type | Required | Description |
|
| 474 |
+
|-----------|------|----------|-------------|
|
| 475 |
+
| `model_id` | string | ✅ Yes | Model identifier |
|
| 476 |
+
|
| 477 |
+
#### Response
|
| 478 |
+
|
| 479 |
+
```json
|
| 480 |
+
{
|
| 481 |
+
"id": "qwen3-0.6b",
|
| 482 |
+
"name": "Qwen/Qwen3-Embedding-0.6B",
|
| 483 |
+
"type": "embeddings",
|
| 484 |
+
"loaded": true,
|
| 485 |
+
"repository": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B"
|
| 486 |
+
}
|
| 487 |
+
```
|
| 488 |
+
|
| 489 |
+
#### Example
|
| 490 |
+
|
| 491 |
+
```bash
|
| 492 |
+
curl -X 'GET' \
|
| 493 |
+
'https://fahmiaziz-api-embedding.hf.space/api/v1/models/qwen3-0.6b' \
|
| 494 |
+
-H 'accept: application/json'
|
| 495 |
+
```
|
| 496 |
+
|
| 497 |
+
---
|
| 498 |
+
|
| 499 |
+
## 🏥 System Endpoints
|
| 500 |
+
|
| 501 |
+
### 5. Health Check
|
| 502 |
+
|
| 503 |
+
**`GET /health`**
|
| 504 |
+
|
| 505 |
+
Check API health status.
|
| 506 |
+
|
| 507 |
+
#### Response
|
| 508 |
+
|
| 509 |
+
```json
|
| 510 |
+
{
|
| 511 |
+
"status": "ok",
|
| 512 |
+
"total_models": 2,
|
| 513 |
+
"loaded_models": 2,
|
| 514 |
+
"startup_complete": true
|
| 515 |
+
}
|
| 516 |
+
```
|
| 517 |
+
|
| 518 |
+
#### Example
|
| 519 |
+
|
| 520 |
+
```bash
|
| 521 |
+
curl -X 'GET' \
|
| 522 |
+
'https://fahmiaziz-api-embedding.hf.space/health' \
|
| 523 |
+
-H 'accept: application/json'
|
| 524 |
+
```
|
| 525 |
+
|
| 526 |
+
---
|
| 527 |
+
|
| 528 |
+
### 6. API Information
|
| 529 |
+
|
| 530 |
+
**`GET /`**
|
| 531 |
+
|
| 532 |
+
Get basic API information.
|
| 533 |
+
|
| 534 |
+
#### Response
|
| 535 |
+
|
| 536 |
+
```json
|
| 537 |
+
{
|
| 538 |
+
"message": "Unified Embedding API - Dense & Sparse Embeddings",
|
| 539 |
+
"version": "3.0.0",
|
| 540 |
+
"docs_url": "/docs"
|
| 541 |
+
}
|
| 542 |
+
```
|
| 543 |
+
|
| 544 |
+
---
|
| 545 |
+
|
| 546 |
+
## ❌ Error Responses
|
| 547 |
+
|
| 548 |
+
All errors follow this format:
|
| 549 |
+
|
| 550 |
+
```json
|
| 551 |
+
{
|
| 552 |
+
"detail": "Error message description"
|
| 553 |
+
}
|
| 554 |
+
```
|
| 555 |
+
|
| 556 |
+
### HTTP Status Codes
|
| 557 |
+
|
| 558 |
+
| Code | Description |
|
| 559 |
+
|------|-------------|
|
| 560 |
+
| 200 | Success |
|
| 561 |
+
| 400 | Bad Request - Invalid input |
|
| 562 |
+
| 404 | Not Found - Model not found |
|
| 563 |
+
| 422 | Unprocessable Entity - Validation error |
|
| 564 |
+
| 500 | Internal Server Error |
|
| 565 |
+
| 503 | Service Unavailable - Server not ready |
|
| 566 |
+
|
| 567 |
+
### Common Errors
|
| 568 |
+
|
| 569 |
+
**Model Not Found (404):**
|
| 570 |
+
```json
|
| 571 |
+
{
|
| 572 |
+
"detail": "Model 'unknown-model' not found in configuration"
|
| 573 |
+
}
|
| 574 |
+
```
|
| 575 |
+
|
| 576 |
+
**Validation Error (422):**
|
| 577 |
+
```json
|
| 578 |
+
{
|
| 579 |
+
"detail": [
|
| 580 |
+
{
|
| 581 |
+
"loc": ["body", "texts"],
|
| 582 |
+
"msg": "texts list cannot be empty",
|
| 583 |
+
"type": "value_error"
|
| 584 |
+
}
|
| 585 |
+
]
|
| 586 |
+
}
|
| 587 |
+
```
|
| 588 |
+
|
| 589 |
+
**Batch Too Large (422):**
|
| 590 |
+
```json
|
| 591 |
+
{
|
| 592 |
+
"detail": "Batch size (150) exceeds maximum (100)"
|
| 593 |
+
}
|
| 594 |
+
```
|
| 595 |
+
|
| 596 |
+
---
|
| 597 |
+
|
| 598 |
+
## 📦 Available Models
|
| 599 |
+
|
| 600 |
+
### Dense Embedding Models
|
| 601 |
+
|
| 602 |
+
| Model ID | Name | Dimension | Description |
|
| 603 |
+
|----------|------|-----------|-------------|
|
| 604 |
+
| `qwen3-0.6b` | Qwen/Qwen3-Embedding-0.6B | 768 | Efficient multilingual embeddings |
|
| 605 |
+
|
| 606 |
+
### Sparse Embedding Models
|
| 607 |
+
|
| 608 |
+
| Model ID | Name | Type | Description |
|
| 609 |
+
|----------|------|------|-------------|
|
| 610 |
+
| `splade-pp-v2` | prithivida/Splade_PP_en_v2 | Sparse | SPLADE++ English v2 |
|
| 611 |
+
|
| 612 |
+
### Reranking Models
|
| 613 |
+
|
| 614 |
+
| Model ID | Name | Type | Description |
|
| 615 |
+
|----------|------|------|-------------|
|
| 616 |
+
| `jina-reranker-v3` | jinaai/jina-reranker-v3-base-en | CrossEncoder | High-quality reranking (English) |
|
| 617 |
+
| `bge-v2-m3` | BAAI/bge-reranker-v2-m3 | CrossEncoder | Multilingual reranking |
|
| 618 |
+
|
| 619 |
+
---
|
| 620 |
+
|
| 621 |
+
## 🔧 Rate Limits
|
| 622 |
+
|
| 623 |
+
**Current Limits:**
|
| 624 |
+
- Max text length: 8,192 characters
|
| 625 |
+
- Max batch size: 100 texts per request
|
| 626 |
+
- No rate limiting (subject to server resources)
|
| 627 |
+
|
| 628 |
+
---
|
| 629 |
+
|
| 630 |
+
## 💡 Best Practices
|
| 631 |
+
|
| 632 |
+
### 1. Batch Processing
|
| 633 |
+
Always batch multiple texts together for better performance:
|
| 634 |
+
```python
|
| 635 |
+
# ❌ Bad - Multiple requests
|
| 636 |
+
for text in texts:
|
| 637 |
+
response = requests.post(url, json={"texts": [text], ...})
|
| 638 |
+
|
| 639 |
+
# ✅ Good - Single batch request
|
| 640 |
+
response = requests.post(url, json={"texts": texts, ...})
|
| 641 |
+
```
|
| 642 |
+
|
| 643 |
+
### 2. Normalize Embeddings for Similarity
|
| 644 |
+
For cosine similarity, always normalize:
|
| 645 |
+
```python
|
| 646 |
+
payload = {
|
| 647 |
+
"texts": ["text"],
|
| 648 |
+
"model_id": "qwen3-0.6b",
|
| 649 |
+
"options": {"normalize_embeddings": True}
|
| 650 |
+
}
|
| 651 |
+
```
|
| 652 |
+
|
| 653 |
+
### 3. Model Selection
|
| 654 |
+
- **Dense models** (qwen3-0.6b): Best for semantic similarity
|
| 655 |
+
- **Sparse models** (splade-pp-v2): Best for keyword matching + semantic
|
| 656 |
+
- **Rerank models** (jina-reranker-v3): Best for re-scoring top candidates
|
| 657 |
+
|
| 658 |
+
### 4. Two-Stage Retrieval (Recommended for RAG)
|
| 659 |
+
```python
|
| 660 |
+
# Stage 1: Fast retrieval with embeddings (top 100)
|
| 661 |
+
query_embedding = embed_query(query)
|
| 662 |
+
candidates = vector_search(query_embedding, top_k=100)
|
| 663 |
+
|
| 664 |
+
# Stage 2: Precise reranking (top 10)
|
| 665 |
+
reranked = rerank(
|
| 666 |
+
query=query,
|
| 667 |
+
documents=[c["text"] for c in candidates],
|
| 668 |
+
model_id="jina-reranker-v3",
|
| 669 |
+
top_k=10
|
| 670 |
+
)
|
| 671 |
+
```
|
| 672 |
+
|
| 673 |
+
### 5. Error Handling
|
| 674 |
+
Always handle errors gracefully:
|
| 675 |
+
```python
|
| 676 |
+
try:
|
| 677 |
+
response = requests.post(url, json=payload)
|
| 678 |
+
response.raise_for_status()
|
| 679 |
+
data = response.json()
|
| 680 |
+
except requests.exceptions.HTTPError as e:
|
| 681 |
+
print(f"HTTP error: {e}")
|
| 682 |
+
except requests.exceptions.RequestException as e:
|
| 683 |
+
print(f"Request failed: {e}")
|
| 684 |
+
```
|
| 685 |
+
|
| 686 |
+
---
|
| 687 |
+
|
| 688 |
+
## 🐛 Troubleshooting
|
| 689 |
+
|
| 690 |
+
### Empty Response
|
| 691 |
+
- Check `texts` field is not empty
|
| 692 |
+
- Validate `model_id` exists
|
| 693 |
+
|
| 694 |
+
### Slow Performance
|
| 695 |
+
- Use batch requests instead of multiple single requests
|
| 696 |
+
- Reduce `batch_size` in options if memory issues
|
| 697 |
+
- Check model is preloaded (first request is slower)
|
| 698 |
+
|
| 699 |
+
### Connection Errors
|
| 700 |
+
- Verify base URL is correct
|
| 701 |
+
- Check network connectivity
|
| 702 |
+
- Ensure server is running (`/health` endpoint)
|
| 703 |
+
|
| 704 |
+
---
|
| 705 |
+
|
| 706 |
+
## 📞 Support
|
| 707 |
+
|
| 708 |
+
- **Documentation**: [GitHub README](https://github.com/fahmiaziz/unified-embedding-api)
|
| 709 |
+
- **Issues**: [GitHub Issues](https://github.com/fahmiaziz/unified-embedding-api/issues)
|
| 710 |
+
- **Hugging Face Space**: [fahmiaziz/api-embedding](https://huggingface.co/spaces/fahmiaziz/api-embedding)
|
| 711 |
+
|
| 712 |
+
---
|
| 713 |
+
|
| 714 |
+
## 🔄 Changelog
|
| 715 |
+
|
| 716 |
+
### v3.0.0 (Current)
|
| 717 |
+
- ✨ Added reranking endpoint (`/api/v1/rerank`)
|
| 718 |
+
- ✨ Support for CrossEncoder models
|
| 719 |
+
- ✨ Unified batch-only response format
|
| 720 |
+
- ✨ Flexible kwargs support
|
| 721 |
+
- ✨ In-memory caching
|
| 722 |
+
- ✨ Improved error handling
|
| 723 |
+
- ✨ Comprehensive documentation
|
| 724 |
+
- 🐛 Fixed type hint errors in RerankModel
|
| 725 |
+
- 🐛 Fixed duplicate parameter errors in rerank endpoint
|
| 726 |
+
|
| 727 |
+
---
|
| 728 |
+
|
| 729 |
+
**Last Updated**: 2025-11-02
|
README.md
CHANGED
|
@@ -11,54 +11,85 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
|
|
| 11 |
|
| 12 |
# 🧠 Unified Embedding API
|
| 13 |
|
| 14 |
-
> 🧩 Unified API for all your Embedding &
|
| 15 |
|
| 16 |
---
|
| 17 |
|
| 18 |
## 🚀 Overview
|
| 19 |
|
| 20 |
-
**Unified Embedding API** is a modular and open-source **RAG-ready API** built for developers who want a simple, unified way to access **dense**, and **
|
| 21 |
|
| 22 |
It’s designed for **vector search**, **semantic retrieval**, and **AI-powered pipelines** — all controlled from a single `config.yaml` file.
|
| 23 |
|
| 24 |
⚠️ **Note:** This is a development API.
|
| 25 |
-
For production deployment, host it on cloud platforms such as **Hugging Face
|
| 26 |
|
| 27 |
---
|
| 28 |
|
| 29 |
## 🧩 Features
|
| 30 |
|
| 31 |
- 🧠 **Unified Interface** — One API to handle dense, sparse, and reranking models.
|
| 32 |
-
-
|
|
|
|
| 33 |
- 🔍 **Vector DB Ready** — Easily integrates with FAISS, Chroma, Qdrant, Milvus, etc.
|
| 34 |
- 📈 **RAG Support** — Perfect base for Retrieval-Augmented Generation systems.
|
| 35 |
- ⚡ **Fast & Lightweight** — Powered by FastAPI and optimized with async processing.
|
| 36 |
-
- 🧰 **Extendable** —
|
| 37 |
|
| 38 |
---
|
| 39 |
|
| 40 |
## 📁 Project Structure
|
| 41 |
|
| 42 |
```
|
| 43 |
-
|
| 44 |
unified-embedding-api/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
│
|
| 46 |
-
├──
|
| 47 |
-
│ ├── embedding.py
|
| 48 |
-
│ └── model_manager.py
|
| 49 |
-
├── models/
|
| 50 |
-
| └──model.py
|
| 51 |
-
├── app.py # Entry point (FastAPI server)
|
| 52 |
-
|── config.yaml # Model + system configuration
|
| 53 |
-
├── Dockerfile
|
| 54 |
├── requirements.txt
|
|
|
|
|
|
|
| 55 |
└── README.md
|
| 56 |
-
|
| 57 |
```
|
| 58 |
---
|
| 59 |
## 🧩 Model Selection
|
| 60 |
|
| 61 |
-
Default configuration is optimized for **CPU 2vCPU / 16GB RAM**. See [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for memory usage reference.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
⚠️ If you plan to use larger models like `Qwen2-embedding-8B`, please upgrade your Space.
|
| 64 |
|
|
@@ -66,37 +97,261 @@ Default configuration is optimized for **CPU 2vCPU / 16GB RAM**. See [MTEB Leade
|
|
| 66 |
|
| 67 |
## ☁️ How to Deploy (Free 🚀)
|
| 68 |
|
| 69 |
-
Deploy your **
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
👉 [Hugging Face Space — fahmiaziz/api-embedding](https://huggingface.co/spaces/fahmiaziz/api-embedding)
|
| 75 |
-
2. **Edit `config.yaml`** to set your own model names and backend preferences.
|
| 76 |
-
3. **Push your code** — Spaces will automatically rebuild and host your API.
|
| 77 |
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
- [Deploy Applications on Hugging Face Spaces (Official Guide)](https://huggingface.co/blog/HemanthSai7/deploy-applications-on-huggingface-spaces)
|
| 82 |
- [How-to-Sync-Hugging-Face-Spaces-with-a-GitHub-Repository by Ruslanmv](https://github.com/ruslanmv/How-to-Sync-Hugging-Face-Spaces-with-a-GitHub-Repository?tab=readme-ov-file)
|
|
|
|
|
|
|
| 83 |
|
| 84 |
---
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
##
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
|
| 92 |
---
|
| 93 |
|
| 94 |
-
##
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
|
|
|
| 98 |
|
| 99 |
---
|
| 100 |
|
| 101 |
> ✨ “Unify your embeddings. Simplify your AI stack.”
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# 🧠 Unified Embedding API
|
| 13 |
|
| 14 |
+
> 🧩 Unified API for all your Embedding, Sparse & Reranking Models — plug and play with any model from Hugging Face or your own fine-tuned versions.
|
| 15 |
|
| 16 |
---
|
| 17 |
|
| 18 |
## 🚀 Overview
|
| 19 |
|
| 20 |
+
**Unified Embedding API** is a modular and open-source **RAG-ready API** built for developers who want a simple, unified way to access **dense**, **sparse**, and **reranking** models.
|
| 21 |
|
| 22 |
It’s designed for **vector search**, **semantic retrieval**, and **AI-powered pipelines** — all controlled from a single `config.yaml` file.
|
| 23 |
|
| 24 |
⚠️ **Note:** This is a development API.
|
| 25 |
+
For production deployment, host it on cloud platforms such as **Hugging Face TEI**, **AWS**, **GCP**, or any cloud provider of your choice.
|
| 26 |
|
| 27 |
---
|
| 28 |
|
| 29 |
## 🧩 Features
|
| 30 |
|
| 31 |
- 🧠 **Unified Interface** — One API to handle dense, sparse, and reranking models.
|
| 32 |
+
- ⚡ **Batch Processing** — Automatic single/batch.
|
| 33 |
+
- 🔧 **Flexible Parameters** — Full control via kwargs and options
|
| 34 |
- 🔍 **Vector DB Ready** — Easily integrates with FAISS, Chroma, Qdrant, Milvus, etc.
|
| 35 |
- 📈 **RAG Support** — Perfect base for Retrieval-Augmented Generation systems.
|
| 36 |
- ⚡ **Fast & Lightweight** — Powered by FastAPI and optimized with async processing.
|
| 37 |
+
- 🧰 **Extendable** — Switch models instantly via `config.yaml` and add your own models or pipelines effortlessly.
|
| 38 |
|
| 39 |
---
|
| 40 |
|
| 41 |
## 📁 Project Structure
|
| 42 |
|
| 43 |
```
|
|
|
|
| 44 |
unified-embedding-api/
|
| 45 |
+
├── src/
|
| 46 |
+
│ ├── api/
|
| 47 |
+
│ │ ├── dependencies.py
|
| 48 |
+
│ │ └── routes/
|
| 49 |
+
│ │ ├── embeddings.py # endpoint sparse & dense
|
| 50 |
+
│ │ ├── models.py
|
| 51 |
+
│ │ |── health.py
|
| 52 |
+
│ │ └── rerank.py # endpoint reranking
|
| 53 |
+
│ ├── core/
|
| 54 |
+
│ │ ├── base.py
|
| 55 |
+
│ │ ├── config.py
|
| 56 |
+
│ │ ├── exceptions.py
|
| 57 |
+
│ │ └── manager.py
|
| 58 |
+
│ ├── models/
|
| 59 |
+
│ │ ├── embeddings/
|
| 60 |
+
│ │ │ ├── dense.py # dense model
|
| 61 |
+
│ │ │ └── sparse.py # sparse model
|
| 62 |
+
│ │ │ └── rank.py # reranking model
|
| 63 |
+
│ │ └── schemas/
|
| 64 |
+
│ │ ├── common.py
|
| 65 |
+
│ │ ├── requests.py
|
| 66 |
+
│ │ └── responses.py
|
| 67 |
+
│ ├── config/
|
| 68 |
+
│ │ ├── settings.py
|
| 69 |
+
│ │ └── models.yaml # add/change models here
|
| 70 |
+
│ └── utils/
|
| 71 |
+
│ ├── logger.py
|
| 72 |
+
│ └── validators.py
|
| 73 |
│
|
| 74 |
+
├── app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
├── requirements.txt
|
| 76 |
+
├── LICENSE
|
| 77 |
+
├── Dockerfile
|
| 78 |
└── README.md
|
|
|
|
| 79 |
```
|
| 80 |
---
|
| 81 |
## 🧩 Model Selection
|
| 82 |
|
| 83 |
+
Default configuration is optimized for **CPU 2vCPU / 16GB RAM**. See [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for model recommendations and memory usage reference.
|
| 84 |
+
|
| 85 |
+
**Add More Models:** Edit `src/config/models.yaml`
|
| 86 |
+
|
| 87 |
+
```yaml
|
| 88 |
+
models:
|
| 89 |
+
your-model-name:
|
| 90 |
+
name: "org/model-name"
|
| 91 |
+
type: "embeddings" # or "sparse-embeddings" or "rerank"
|
| 92 |
+
```
|
| 93 |
|
| 94 |
⚠️ If you plan to use larger models like `Qwen2-embedding-8B`, please upgrade your Space.
|
| 95 |
|
|
|
|
| 97 |
|
| 98 |
## ☁️ How to Deploy (Free 🚀)
|
| 99 |
|
| 100 |
+
Deploy your **Custom Embedding API** on **Hugging Face Spaces** — free, fast, and serverless.
|
| 101 |
+
|
| 102 |
+
### **1️⃣ Deploy on Hugging Face Spaces (Free!)**
|
| 103 |
+
|
| 104 |
+
1. **Duplicate this Space:**
|
| 105 |
+
👉 [fahmiaziz/api-embedding](https://huggingface.co/spaces/fahmiaziz/api-embedding)
|
| 106 |
+
Click **⋯** (three dots) → **Duplicate this Space**
|
| 107 |
+
|
| 108 |
+
2. **Add HF_TOKEN environment variable** Make sure your space is public
|
| 109 |
+
|
| 110 |
+
3. **Clone your Space locally:**
|
| 111 |
+
Click **⋯** → **Clone repository**
|
| 112 |
+
```bash
|
| 113 |
+
git clone https://huggingface.co/spaces/YOUR_USERNAME/api-embedding
|
| 114 |
+
cd api-embedding
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
4. **Edit `src/config/models.yaml`** to customize models:
|
| 118 |
+
```yaml
|
| 119 |
+
models:
|
| 120 |
+
your-model:
|
| 121 |
+
name: "org/model-name"
|
| 122 |
+
type: "embeddings" # or "sparse-embeddings" or "rerank"
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
5. **Commit and push changes:**
|
| 126 |
+
```bash
|
| 127 |
+
git add src/config/models.yaml
|
| 128 |
+
git commit -m "Update models configuration"
|
| 129 |
+
git push
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
6. **Access your API:**
|
| 133 |
+
Click **⋯** → **Embed this Space** -> copy **Direct URL**
|
| 134 |
+
```
|
| 135 |
+
https://YOUR_USERNAME-api-embedding.hf.space
|
| 136 |
+
https://YOUR_USERNAME-api-embedding.hf.space/docs # Interactive docs
|
| 137 |
+
```
|
| 138 |
|
| 139 |
+
That’s it! You now have a live embedding API endpoint powered by your models.
|
| 140 |
|
| 141 |
+
### **2️⃣ Run Locally (NOT RECOMMENDED)**
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
+
```bash
|
| 144 |
+
# Clone repository
|
| 145 |
+
git clone https://github.com/fahmiaziz98/unified-embedding-api.git
|
| 146 |
+
cd unified-embedding-api
|
| 147 |
+
|
| 148 |
+
# Create virtual environment
|
| 149 |
+
python -m venv venv
|
| 150 |
+
source venv/bin/activate
|
| 151 |
+
|
| 152 |
+
# Install dependencies
|
| 153 |
+
pip install -r requirements.txt
|
| 154 |
+
|
| 155 |
+
# Run server
|
| 156 |
+
python app.py
|
| 157 |
+
```
|
| 158 |
+
|
| 159 |
+
API available at: `http://localhost:7860`
|
| 160 |
+
|
| 161 |
+
### **3️⃣ Run with Docker**
|
| 162 |
+
|
| 163 |
+
```bash
|
| 164 |
+
# Build and run
|
| 165 |
+
docker-compose up --build
|
| 166 |
+
|
| 167 |
+
# Or with Docker only
|
| 168 |
+
docker build -t embedding-api .
|
| 169 |
+
docker run -p 7860:7860 embedding-api
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
## 📖 Usage Examples
|
| 173 |
+
|
| 174 |
+
### **Python**
|
| 175 |
+
|
| 176 |
+
```python
|
| 177 |
+
import requests
|
| 178 |
+
|
| 179 |
+
url = "http://localhost:7860/api/v1/embeddings/embed"
|
| 180 |
+
|
| 181 |
+
# Single embedding
|
| 182 |
+
response = requests.post(url, json={
|
| 183 |
+
"texts": ["What is artificial intelligence?"],
|
| 184 |
+
"model_id": "qwen3-0.6b"
|
| 185 |
+
})
|
| 186 |
+
print(response.json())
|
| 187 |
+
|
| 188 |
+
# Batch embeddings
|
| 189 |
+
response = requests.post(url, json={
|
| 190 |
+
"texts": [
|
| 191 |
+
"First document",
|
| 192 |
+
"Second document",
|
| 193 |
+
"Third document"
|
| 194 |
+
],
|
| 195 |
+
"model_id": "qwen3-0.6b",
|
| 196 |
+
"options": {
|
| 197 |
+
"normalize_embeddings": True
|
| 198 |
+
}
|
| 199 |
+
})
|
| 200 |
+
embeddings = response.json()["embeddings"]
|
| 201 |
+
```
|
| 202 |
+
|
| 203 |
+
### **cURL**
|
| 204 |
+
|
| 205 |
+
```bash
|
| 206 |
+
# Single embedding (Dense)
|
| 207 |
+
curl -X POST "http://localhost:7860/api/v1/embeddings/embed" \
|
| 208 |
+
-H "Content-Type: application/json" \
|
| 209 |
+
-d '{
|
| 210 |
+
"texts": ["Hello world"],
|
| 211 |
+
"prompt": "add instructions here",
|
| 212 |
+
"model_id": "qwen3-0.6b"
|
| 213 |
+
}'
|
| 214 |
+
|
| 215 |
+
# Batch embeddings (Sparse)
|
| 216 |
+
curl -X POST "http://localhost:7860/api/v1/embeddings/embed" \
|
| 217 |
+
-H "Content-Type: application/json" \
|
| 218 |
+
-d '{
|
| 219 |
+
"texts": ["First doc", "Second doc", "Third doc"],
|
| 220 |
+
"model_id": "splade-pp-v2"
|
| 221 |
+
}'
|
| 222 |
+
|
| 223 |
+
# Reranking
|
| 224 |
+
curl -X POST "http://localhost:7860/api/v1/rerank" \
|
| 225 |
+
-H "Content-Type: application/json" \
|
| 226 |
+
-d '{
|
| 227 |
+
"documents": [
|
| 228 |
+
"Python is a popular language for data science due to its extensive libraries.",
|
| 229 |
+
"R is widely used in statistical computing and data analysis.",
|
| 230 |
+
"Java is a versatile language used in various applications, including data science.",
|
| 231 |
+
"SQL is essential for managing and querying relational databases.",
|
| 232 |
+
"Julia is a high-performance language gaining popularity for numerical computing and data science."
|
| 233 |
+
],
|
| 234 |
+
"model_id": "bge-v2-m3",
|
| 235 |
+
"query": "Python best programming languages for data science",
|
| 236 |
+
"top_k": 3
|
| 237 |
+
}'
|
| 238 |
+
|
| 239 |
+
# Query embedding with options
|
| 240 |
+
curl -X POST "http://localhost:7860/api/v1/embeddings/query" \
|
| 241 |
+
-H "Content-Type: application/json" \
|
| 242 |
+
-d '{
|
| 243 |
+
"texts": ["What is machine learning?"],
|
| 244 |
+
"model_id": "qwen3-0.6b",
|
| 245 |
+
"options": {
|
| 246 |
+
"normalize_embeddings": true,
|
| 247 |
+
"batch_size": 32
|
| 248 |
+
}
|
| 249 |
+
}'
|
| 250 |
+
```
|
| 251 |
+
|
| 252 |
+
### **JavaScript/TypeScript**
|
| 253 |
+
|
| 254 |
+
```typescript
|
| 255 |
+
const url = "http://localhost:7860/api/v1/embeddings/embed";
|
| 256 |
+
|
| 257 |
+
const response = await fetch(url, {
|
| 258 |
+
method: "POST",
|
| 259 |
+
headers: {
|
| 260 |
+
"Content-Type": "application/json",
|
| 261 |
+
},
|
| 262 |
+
body: JSON.stringify({
|
| 263 |
+
texts: ["Hello world"],
|
| 264 |
+
model_id: "qwen3-0.6b",
|
| 265 |
+
}),
|
| 266 |
+
});
|
| 267 |
+
|
| 268 |
+
const data = await response.json();
|
| 269 |
+
console.log(data.embedding);
|
| 270 |
+
```
|
| 271 |
|
| 272 |
+
---
|
| 273 |
+
|
| 274 |
+
## 📊 API Endpoints
|
| 275 |
+
|
| 276 |
+
| Endpoint | Method | Description |
|
| 277 |
+
|----------|--------|-------------|
|
| 278 |
+
| `/api/v1/embeddings/embed` | POST | Generate document embeddings (single/batch) |
|
| 279 |
+
| `/api/v1/embeddings/query` | POST | Generate query embeddings (single/batch) |
|
| 280 |
+
| `/api/v1/rerank` | POST | Rerank documents based on a query |
|
| 281 |
+
| `/api/v1/models` | GET | List available models |
|
| 282 |
+
| `/api/v1/models/{model_id}` | GET | Get model information |
|
| 283 |
+
| `/health` | GET | Health check |
|
| 284 |
+
| `/` | GET | API information |
|
| 285 |
+
| `/docs` | GET | Interactive API documentation |
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
### 🤝 Contributing
|
| 289 |
+
|
| 290 |
+
Contributions are welcome! Please:
|
| 291 |
+
|
| 292 |
+
1. Fork the repository
|
| 293 |
+
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
|
| 294 |
+
3. Commit your changes (`git commit -m 'Add amazing feature'`)
|
| 295 |
+
4. Push to the branch (`git push origin feature/amazing-feature`)
|
| 296 |
+
5. Open a Pull Request
|
| 297 |
+
|
| 298 |
+
**Development Setup:**
|
| 299 |
+
|
| 300 |
+
```bash
|
| 301 |
+
git clone https://github.com/fahmiaziz/unified-embedding-api.git
|
| 302 |
+
cd unified-embedding-api
|
| 303 |
+
pip install -r requirements-dev.txt
|
| 304 |
+
pre-commit install # (optional)
|
| 305 |
+
```
|
| 306 |
+
|
| 307 |
+
---
|
| 308 |
+
|
| 309 |
+
## 📚 Resources
|
| 310 |
+
|
| 311 |
+
- [API Documentation](API.md)
|
| 312 |
+
- [Sentence Transformers](https://www.sbert.net/)
|
| 313 |
+
- [FastAPI Docs](https://fastapi.tiangolo.com/)
|
| 314 |
+
- [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
|
| 315 |
+
- [Hugging Face Spaces](https://huggingface.co/docs/hub/spaces)
|
| 316 |
- [Deploy Applications on Hugging Face Spaces (Official Guide)](https://huggingface.co/blog/HemanthSai7/deploy-applications-on-huggingface-spaces)
|
| 317 |
- [How-to-Sync-Hugging-Face-Spaces-with-a-GitHub-Repository by Ruslanmv](https://github.com/ruslanmv/How-to-Sync-Hugging-Face-Spaces-with-a-GitHub-Repository?tab=readme-ov-file)
|
| 318 |
+
- [Duplicate & Clone space to local machine](https://huggingface.co/docs/hub/spaces-overview#duplicating-a-space)
|
| 319 |
+
---
|
| 320 |
|
| 321 |
---
|
| 322 |
|
| 323 |
+
## 📝 License
|
| 324 |
+
|
| 325 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
| 326 |
+
|
| 327 |
+
---
|
| 328 |
|
| 329 |
+
## 🙏 Acknowledgments
|
| 330 |
|
| 331 |
+
- **Sentence Transformers** for the embedding models
|
| 332 |
+
- **FastAPI** for the excellent web framework
|
| 333 |
+
- **Hugging Face** for model hosting and Spaces
|
| 334 |
+
- **Open Source Community** for inspiration and support
|
| 335 |
|
| 336 |
---
|
| 337 |
|
| 338 |
+
## 📞 Support
|
| 339 |
|
| 340 |
+
- **Issues:** [GitHub Issues](https://github.com/fahmiaziz/unified-embedding-api/issues)
|
| 341 |
+
- **Discussions:** [GitHub Discussions](https://github.com/fahmiaziz/unified-embedding-api/discussions)
|
| 342 |
+
- **Hugging Face Space:** [fahmiaziz/api-embedding](https://huggingface.co/spaces/fahmiaziz/api-embedding)
|
| 343 |
|
| 344 |
---
|
| 345 |
|
| 346 |
> ✨ “Unify your embeddings. Simplify your AI stack.”
|
| 347 |
|
| 348 |
+
<div align="center">
|
| 349 |
+
|
| 350 |
+
**⭐ Star this repo if you find it useful!**
|
| 351 |
+
|
| 352 |
+
Made with ❤️ by the Open-Source Community
|
| 353 |
+
|
| 354 |
+
</div>
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
|
core/__init__.py
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
from .model_manager import ModelManager
|
| 2 |
-
|
| 3 |
-
__all__ = ["ModelManager"]
|
|
|
|
|
|
|
|
|
|
|
|
core/embedding.py
DELETED
|
@@ -1,81 +0,0 @@
|
|
| 1 |
-
from typing import List, Optional
|
| 2 |
-
from sentence_transformers import SentenceTransformer
|
| 3 |
-
from loguru import logger
|
| 4 |
-
|
| 5 |
-
from ..src.core.config import ModelConfig
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
class EmbeddingModel:
|
| 9 |
-
"""
|
| 10 |
-
Embedding model wrapper for dense embeddings.
|
| 11 |
-
|
| 12 |
-
attributes:
|
| 13 |
-
config: ModelConfig instance
|
| 14 |
-
model: SentenceTransformer instance
|
| 15 |
-
_loaded: Flag indicating if the model is loaded
|
| 16 |
-
"""
|
| 17 |
-
|
| 18 |
-
def __init__(self, config: ModelConfig):
|
| 19 |
-
self.config = config
|
| 20 |
-
self.model: Optional[SentenceTransformer] = None
|
| 21 |
-
self._loaded = False
|
| 22 |
-
|
| 23 |
-
def load(self) -> None:
|
| 24 |
-
"""Load the embedding model."""
|
| 25 |
-
if self._loaded:
|
| 26 |
-
return
|
| 27 |
-
|
| 28 |
-
logger.info(f"Loading embedding model: {self.config.name}")
|
| 29 |
-
try:
|
| 30 |
-
self.model = SentenceTransformer(
|
| 31 |
-
self.config.name, device="cpu", trust_remote_code=True
|
| 32 |
-
)
|
| 33 |
-
self._loaded = True
|
| 34 |
-
logger.success(f"Loaded embedding model: {self.config.id}")
|
| 35 |
-
except Exception as e:
|
| 36 |
-
logger.error(f"Failed to load embedding model {self.config.id}: {e}")
|
| 37 |
-
raise
|
| 38 |
-
|
| 39 |
-
def query_embed(self, text: List[str], prompt: Optional[str] = None) -> List[float]:
|
| 40 |
-
"""
|
| 41 |
-
method to generate embedding for a single text.
|
| 42 |
-
|
| 43 |
-
Args:
|
| 44 |
-
text: Input text
|
| 45 |
-
prompt: Optional prompt for instruction-based models
|
| 46 |
-
|
| 47 |
-
Returns:
|
| 48 |
-
Embedding vector
|
| 49 |
-
"""
|
| 50 |
-
if not self._loaded:
|
| 51 |
-
self.load()
|
| 52 |
-
|
| 53 |
-
try:
|
| 54 |
-
embeddings = self.model.encode_query(text, prompt=prompt)
|
| 55 |
-
return [embedding.tolist() for embedding in embeddings]
|
| 56 |
-
except Exception as e:
|
| 57 |
-
logger.error(f"Embedding generation failed: {e}")
|
| 58 |
-
raise
|
| 59 |
-
|
| 60 |
-
def embed_documents(
|
| 61 |
-
self, texts: List[str], prompt: Optional[str] = None
|
| 62 |
-
) -> List[List[float]]:
|
| 63 |
-
"""
|
| 64 |
-
method to generate embeddings for a list of texts.
|
| 65 |
-
|
| 66 |
-
Args:
|
| 67 |
-
texts: List of input texts
|
| 68 |
-
prompt: Optional prompt for instruction-based models
|
| 69 |
-
|
| 70 |
-
Returns:
|
| 71 |
-
List of embedding vectors
|
| 72 |
-
"""
|
| 73 |
-
if not self._loaded:
|
| 74 |
-
self.load()
|
| 75 |
-
|
| 76 |
-
try:
|
| 77 |
-
embeddings = self.model.encode_document(texts, prompt=prompt)
|
| 78 |
-
return [embedding.tolist() for embedding in embeddings]
|
| 79 |
-
except Exception as e:
|
| 80 |
-
logger.error(f"Embedding generation failed: {e}")
|
| 81 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
core/model_manager.py
DELETED
|
@@ -1,229 +0,0 @@
|
|
| 1 |
-
import yaml
|
| 2 |
-
from pathlib import Path
|
| 3 |
-
from loguru import logger
|
| 4 |
-
from typing import Dict, List, Any, Union
|
| 5 |
-
from threading import Lock
|
| 6 |
-
from .embedding import EmbeddingModel
|
| 7 |
-
from .sparse import SparseEmbeddingModel
|
| 8 |
-
from ..src.core.config import ModelConfig
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
class ModelManager:
|
| 12 |
-
"""
|
| 13 |
-
Manages multiple embedding models based on a configuration file.
|
| 14 |
-
|
| 15 |
-
Attributes:
|
| 16 |
-
models: Dictionary mapping model IDs to their instances.
|
| 17 |
-
model_configs: Dictionary mapping model IDs to their configurations.
|
| 18 |
-
default_model_id: The default model ID to use if none is specified.
|
| 19 |
-
_lock: A threading lock for thread-safe operations.
|
| 20 |
-
_preload_complete: Flag indicating if all models have been preloaded.
|
| 21 |
-
"""
|
| 22 |
-
|
| 23 |
-
def __init__(self, config_path: str = "config.yaml"):
|
| 24 |
-
self.models: Dict[str, Union[EmbeddingModel, SparseEmbeddingModel]] = {}
|
| 25 |
-
self.model_configs: Dict[str, ModelConfig] = {}
|
| 26 |
-
self._lock = Lock() # For thread safety
|
| 27 |
-
self._preload_complete = False
|
| 28 |
-
|
| 29 |
-
self._load_config(config_path)
|
| 30 |
-
|
| 31 |
-
def _load_config(self, config_path: str) -> None:
|
| 32 |
-
"""Load model configurations from a YAML file."""
|
| 33 |
-
|
| 34 |
-
config_file = Path(config_path)
|
| 35 |
-
if not config_file.exists():
|
| 36 |
-
raise FileNotFoundError(f"Configuration file not found: {config_path}")
|
| 37 |
-
|
| 38 |
-
try:
|
| 39 |
-
with open(config_file, "r", encoding="utf-8") as f:
|
| 40 |
-
config = yaml.safe_load(f)
|
| 41 |
-
|
| 42 |
-
for model_id, model_cfg in config["models"].items():
|
| 43 |
-
self.model_configs[model_id] = ModelConfig(model_id, model_cfg)
|
| 44 |
-
|
| 45 |
-
logger.info(f"Loaded {len(self.model_configs)} model configurations")
|
| 46 |
-
|
| 47 |
-
except Exception as e:
|
| 48 |
-
raise ValueError(f"Failed to load configuration: {e}")
|
| 49 |
-
|
| 50 |
-
def _create_model(
|
| 51 |
-
self, config: ModelConfig
|
| 52 |
-
) -> Union[EmbeddingModel, SparseEmbeddingModel]:
|
| 53 |
-
"""
|
| 54 |
-
Factory method to create model instances based on type.
|
| 55 |
-
|
| 56 |
-
Args:
|
| 57 |
-
config: The ModelConfig instance.
|
| 58 |
-
|
| 59 |
-
Returns:
|
| 60 |
-
The created model instance.
|
| 61 |
-
"""
|
| 62 |
-
if config.type == "sparse-embeddings":
|
| 63 |
-
return SparseEmbeddingModel(config)
|
| 64 |
-
else:
|
| 65 |
-
return EmbeddingModel(config)
|
| 66 |
-
|
| 67 |
-
def preload_all_models(self) -> None:
|
| 68 |
-
"""
|
| 69 |
-
Preload all models defined in the configuration.
|
| 70 |
-
returns: None
|
| 71 |
-
"""
|
| 72 |
-
|
| 73 |
-
if self._preload_complete:
|
| 74 |
-
logger.info("Models already preloaded")
|
| 75 |
-
return
|
| 76 |
-
|
| 77 |
-
logger.info(f"Preloading {len(self.model_configs)} models...")
|
| 78 |
-
|
| 79 |
-
successful_loads = 0
|
| 80 |
-
for model_id, config in self.model_configs.items():
|
| 81 |
-
try:
|
| 82 |
-
with self._lock:
|
| 83 |
-
if model_id not in self.models:
|
| 84 |
-
model = self._create_model(config)
|
| 85 |
-
model.load()
|
| 86 |
-
self.models[model_id] = model
|
| 87 |
-
successful_loads += 1
|
| 88 |
-
logger.debug(f"Preloaded: {model_id}")
|
| 89 |
-
|
| 90 |
-
except Exception as e:
|
| 91 |
-
logger.error(f"Failed to preload {model_id}: {e}")
|
| 92 |
-
|
| 93 |
-
self._preload_complete = True
|
| 94 |
-
logger.success(f"Preloaded {successful_loads}/{len(self.model_configs)} models")
|
| 95 |
-
|
| 96 |
-
def get_model(self, model_id: str) -> Union[EmbeddingModel, SparseEmbeddingModel]:
|
| 97 |
-
"""
|
| 98 |
-
Retrieve a model instance by its ID, loading it on-demand if necessary.
|
| 99 |
-
|
| 100 |
-
Args:
|
| 101 |
-
model_id: The ID of the model to retrieve.
|
| 102 |
-
|
| 103 |
-
Returns:
|
| 104 |
-
The model instance.
|
| 105 |
-
"""
|
| 106 |
-
if model_id not in self.model_configs:
|
| 107 |
-
raise ValueError(f"Model '{model_id}' not found in configuration")
|
| 108 |
-
|
| 109 |
-
with self._lock:
|
| 110 |
-
if model_id in self.models:
|
| 111 |
-
return self.models[model_id]
|
| 112 |
-
|
| 113 |
-
logger.info(f"🔄 Loading model on-demand: {model_id}")
|
| 114 |
-
try:
|
| 115 |
-
config = self.model_configs[model_id]
|
| 116 |
-
model = self._create_model(config)
|
| 117 |
-
model.load()
|
| 118 |
-
self.models[model_id] = model
|
| 119 |
-
logger.success(f"Loaded: {model_id}")
|
| 120 |
-
return model
|
| 121 |
-
except Exception as e:
|
| 122 |
-
raise RuntimeError(f"Failed to load model {model_id}: {e}")
|
| 123 |
-
|
| 124 |
-
def get_model_info(self, model_id: str) -> Dict[str, Any]:
|
| 125 |
-
"""
|
| 126 |
-
Get detailed information about a specific model.
|
| 127 |
-
|
| 128 |
-
Args:
|
| 129 |
-
model_id: The ID of the model.
|
| 130 |
-
|
| 131 |
-
Returns:
|
| 132 |
-
A dictionary with model details and load status.
|
| 133 |
-
"""
|
| 134 |
-
if model_id not in self.model_configs:
|
| 135 |
-
return {}
|
| 136 |
-
|
| 137 |
-
config = self.model_configs[model_id]
|
| 138 |
-
is_loaded = model_id in self.models and self.models[model_id]._loaded
|
| 139 |
-
|
| 140 |
-
return {
|
| 141 |
-
"id": config.id,
|
| 142 |
-
"name": config.name,
|
| 143 |
-
"type": config.type,
|
| 144 |
-
"loaded": is_loaded,
|
| 145 |
-
"repository": config.repository,
|
| 146 |
-
}
|
| 147 |
-
|
| 148 |
-
def generate_api_description(self) -> str:
|
| 149 |
-
"""Generate a dynamic API description based on available models."""
|
| 150 |
-
|
| 151 |
-
dense_models = []
|
| 152 |
-
sparse_models = []
|
| 153 |
-
|
| 154 |
-
for model_id, config in self.model_configs.items():
|
| 155 |
-
if config.type == "sparse-embeddings":
|
| 156 |
-
sparse_models.append(f"**{config.name}**")
|
| 157 |
-
else:
|
| 158 |
-
dense_models.append(f"**{config.name}**")
|
| 159 |
-
|
| 160 |
-
description = """
|
| 161 |
-
High-performance API for generating text embeddings using multiple model architectures.
|
| 162 |
-
|
| 163 |
-
"""
|
| 164 |
-
if dense_models:
|
| 165 |
-
description += "✅ **Dense Embedding Models:**\n"
|
| 166 |
-
for model in dense_models:
|
| 167 |
-
description += f"- {model}\n"
|
| 168 |
-
description += "\n"
|
| 169 |
-
|
| 170 |
-
if sparse_models:
|
| 171 |
-
description += "🔤 **Sparse Embedding Models:**\n"
|
| 172 |
-
for model in sparse_models:
|
| 173 |
-
description += f"- {model}\n"
|
| 174 |
-
description += "\n"
|
| 175 |
-
|
| 176 |
-
# Add features section
|
| 177 |
-
description += """
|
| 178 |
-
🚀 **Features:**
|
| 179 |
-
- Single text embedding generation
|
| 180 |
-
- Batch text embedding processing
|
| 181 |
-
- Both dense and sparse vector outputs
|
| 182 |
-
- Automatic model type detection
|
| 183 |
-
- List all available models with status
|
| 184 |
-
- Fast response times with preloading
|
| 185 |
-
|
| 186 |
-
📊 **Statistics:**
|
| 187 |
-
"""
|
| 188 |
-
description += f"- Total configured models: **{len(self.model_configs)}**\n"
|
| 189 |
-
description += f"- Dense embedding models: **{len(dense_models)}**\n"
|
| 190 |
-
description += f"- Sparse embedding models: **{len(sparse_models)}**\n"
|
| 191 |
-
description += """
|
| 192 |
-
|
| 193 |
-
⚠️ Note: This is a development API. For production use, must deploy on cloud like TGI Huggingface, AWS, GCP etc
|
| 194 |
-
"""
|
| 195 |
-
return description.strip()
|
| 196 |
-
|
| 197 |
-
def list_models(self) -> List[Dict[str, Any]]:
|
| 198 |
-
"""List all available models with their configurations and load status."""
|
| 199 |
-
return [self.get_model_info(model_id) for model_id in self.model_configs.keys()]
|
| 200 |
-
|
| 201 |
-
def get_memory_usage(self) -> Dict[str, Any]:
|
| 202 |
-
"""Get memory usage statistics for loaded models."""
|
| 203 |
-
loaded_models = []
|
| 204 |
-
for model_id, model in self.models.items():
|
| 205 |
-
if model._loaded:
|
| 206 |
-
loaded_models.append(
|
| 207 |
-
{
|
| 208 |
-
"id": model_id,
|
| 209 |
-
"type": self.model_configs[model_id].type,
|
| 210 |
-
"name": model.config.name,
|
| 211 |
-
}
|
| 212 |
-
)
|
| 213 |
-
|
| 214 |
-
return {
|
| 215 |
-
"total_available": len(self.model_configs),
|
| 216 |
-
"loaded_count": len(loaded_models),
|
| 217 |
-
"loaded_models": loaded_models,
|
| 218 |
-
"preload_complete": self._preload_complete,
|
| 219 |
-
}
|
| 220 |
-
|
| 221 |
-
def unload_all_models(self) -> None:
|
| 222 |
-
"""Unload all models and clear the model cache."""
|
| 223 |
-
with self._lock:
|
| 224 |
-
count = len(self.models)
|
| 225 |
-
for model in self.models.values():
|
| 226 |
-
model.unload()
|
| 227 |
-
self.models.clear()
|
| 228 |
-
self._preload_complete = False
|
| 229 |
-
logger.info(f"Unloaded {count} models")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
core/sparse.py
DELETED
|
@@ -1,123 +0,0 @@
|
|
| 1 |
-
from typing import Any, Dict, List, Optional
|
| 2 |
-
from sentence_transformers import SparseEncoder
|
| 3 |
-
from loguru import logger
|
| 4 |
-
|
| 5 |
-
from ..src.core.config import ModelConfig
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
class SparseEmbeddingModel:
|
| 9 |
-
"""
|
| 10 |
-
Sparse embedding model wrapper.
|
| 11 |
-
|
| 12 |
-
Attributes:
|
| 13 |
-
config: ModelConfig instance
|
| 14 |
-
model: SparseEncoder instance
|
| 15 |
-
_loaded: Flag indicating if the model is loaded
|
| 16 |
-
"""
|
| 17 |
-
|
| 18 |
-
def __init__(self, config: ModelConfig):
|
| 19 |
-
self.config = config
|
| 20 |
-
self.model: Optional[SparseEncoder] = None
|
| 21 |
-
self._loaded = False
|
| 22 |
-
|
| 23 |
-
def load(self) -> None:
|
| 24 |
-
"""Load the sparse embedding model."""
|
| 25 |
-
if self._loaded:
|
| 26 |
-
return
|
| 27 |
-
|
| 28 |
-
logger.info(f"Loading sparse model: {self.config.name}")
|
| 29 |
-
try:
|
| 30 |
-
self.model = SparseEncoder(self.config.name)
|
| 31 |
-
self._loaded = True
|
| 32 |
-
logger.success(f"Loaded sparse model: {self.config.id}")
|
| 33 |
-
except Exception as e:
|
| 34 |
-
logger.error(f"Failed to load sparse model {self.config.id}: {e}")
|
| 35 |
-
raise
|
| 36 |
-
|
| 37 |
-
def query_embed(
|
| 38 |
-
self, text: List[str], prompt: Optional[str] = None
|
| 39 |
-
) -> Dict[Any, Any]:
|
| 40 |
-
"""
|
| 41 |
-
Generate a sparse embedding for a single text.
|
| 42 |
-
|
| 43 |
-
Args:
|
| 44 |
-
text: Input text
|
| 45 |
-
prompt: Optional prompt for instruction-based models
|
| 46 |
-
Returns:
|
| 47 |
-
Sparse embedding as a dictionary with 'indices' and 'values' keys.
|
| 48 |
-
"""
|
| 49 |
-
if not self._loaded:
|
| 50 |
-
self.load()
|
| 51 |
-
|
| 52 |
-
try:
|
| 53 |
-
tensor = self.model.encode_query(text)
|
| 54 |
-
|
| 55 |
-
values = tensor[0].coalesce().values().tolist()
|
| 56 |
-
indices = tensor[0].coalesce().indices()[0].tolist()
|
| 57 |
-
|
| 58 |
-
return {"indices": indices, "values": values}
|
| 59 |
-
except Exception as e:
|
| 60 |
-
logger.error(f"Embedding error: {e}")
|
| 61 |
-
raise
|
| 62 |
-
|
| 63 |
-
def embed_documents(
|
| 64 |
-
self, text: List[str], prompt: Optional[str] = None
|
| 65 |
-
) -> Dict[Any, Any]:
|
| 66 |
-
"""
|
| 67 |
-
Generate a sparse embedding for a single text.
|
| 68 |
-
|
| 69 |
-
Args:
|
| 70 |
-
text: Input text
|
| 71 |
-
prompt: Optional prompt for instruction-based models
|
| 72 |
-
|
| 73 |
-
Returns:
|
| 74 |
-
Sparse embedding as a dictionary with 'indices' and 'values' keys.
|
| 75 |
-
"""
|
| 76 |
-
|
| 77 |
-
try:
|
| 78 |
-
tensor = self.model.encode(text)
|
| 79 |
-
|
| 80 |
-
values = tensor[0].coalesce().values().tolist()
|
| 81 |
-
indices = tensor[0].coalesce().indices()[0].tolist()
|
| 82 |
-
|
| 83 |
-
return {"indices": indices, "values": values}
|
| 84 |
-
|
| 85 |
-
except Exception as e:
|
| 86 |
-
logger.error(f"Embedding error: {e}")
|
| 87 |
-
raise
|
| 88 |
-
|
| 89 |
-
def embed_batch(
|
| 90 |
-
self, texts: List[str], prompt: Optional[str] = None
|
| 91 |
-
) -> List[Dict[str, Any]]:
|
| 92 |
-
"""
|
| 93 |
-
Generate sparse embeddings for a batch of texts.
|
| 94 |
-
|
| 95 |
-
Args:
|
| 96 |
-
texts: List of input texts
|
| 97 |
-
prompt: Optional prompt for instruction-based models
|
| 98 |
-
|
| 99 |
-
Returns:
|
| 100 |
-
List of sparse embeddings as dictionaries with 'text' and 'sparse_embedding' keys.
|
| 101 |
-
"""
|
| 102 |
-
if not self._loaded:
|
| 103 |
-
self.load()
|
| 104 |
-
|
| 105 |
-
try:
|
| 106 |
-
tensors = self.model.encode(texts)
|
| 107 |
-
results = []
|
| 108 |
-
|
| 109 |
-
for i, tensor in enumerate(tensors):
|
| 110 |
-
values = tensor.coalesce().values().tolist()
|
| 111 |
-
indices = tensor.coalesce().indices()[0].tolist()
|
| 112 |
-
|
| 113 |
-
results.append(
|
| 114 |
-
{
|
| 115 |
-
"text": texts[i],
|
| 116 |
-
"sparse_embedding": {"indices": indices, "values": values},
|
| 117 |
-
}
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
return results
|
| 121 |
-
except Exception as e:
|
| 122 |
-
logger.error(f"Sparse embedding generation failed: {e}")
|
| 123 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/__init__.py
DELETED
|
@@ -1,20 +0,0 @@
|
|
| 1 |
-
# app/models/__init__.py
|
| 2 |
-
from .model import (
|
| 3 |
-
BatchEmbedRequest,
|
| 4 |
-
BatchEmbedResponse,
|
| 5 |
-
EmbedRequest,
|
| 6 |
-
EmbedResponse,
|
| 7 |
-
SparseEmbedResponse,
|
| 8 |
-
SparseEmbedding,
|
| 9 |
-
BatchSparseEmbedResponse,
|
| 10 |
-
)
|
| 11 |
-
|
| 12 |
-
__all__ = [
|
| 13 |
-
"EmbedRequest",
|
| 14 |
-
"EmbedResponse",
|
| 15 |
-
"BatchEmbedRequest",
|
| 16 |
-
"BatchEmbedResponse",
|
| 17 |
-
"SparseEmbedding",
|
| 18 |
-
"SparseEmbedResponse",
|
| 19 |
-
"BatchSparseEmbedResponse",
|
| 20 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/model.py
DELETED
|
@@ -1,110 +0,0 @@
|
|
| 1 |
-
from typing import List, Optional
|
| 2 |
-
from pydantic import BaseModel
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
class EmbedRequest(BaseModel):
|
| 6 |
-
"""
|
| 7 |
-
Request model for single text embedding.
|
| 8 |
-
|
| 9 |
-
Attributes:
|
| 10 |
-
text: The input text to embed
|
| 11 |
-
model_id: Identifier of the model to use
|
| 12 |
-
prompt: Optional prompt for instruction-based models
|
| 13 |
-
"""
|
| 14 |
-
|
| 15 |
-
text: str
|
| 16 |
-
model_id: str
|
| 17 |
-
prompt: Optional[str] = None
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
class BatchEmbedRequest(BaseModel):
|
| 21 |
-
"""
|
| 22 |
-
Request model for batch text embedding.
|
| 23 |
-
|
| 24 |
-
Attributes:
|
| 25 |
-
texts: List of input texts to embed
|
| 26 |
-
model_id: Identifier of the model to use
|
| 27 |
-
prompt: Optional prompt for instruction-based models
|
| 28 |
-
"""
|
| 29 |
-
|
| 30 |
-
texts: List[str]
|
| 31 |
-
model_id: str
|
| 32 |
-
prompt: Optional[str] = None
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
class EmbedResponse(BaseModel):
|
| 36 |
-
"""
|
| 37 |
-
Response model for single text embedding.
|
| 38 |
-
|
| 39 |
-
Attributes:
|
| 40 |
-
embedding: The generated embedding vector
|
| 41 |
-
dimension: Dimensionality of the embedding
|
| 42 |
-
model_id: Identifier of the model used
|
| 43 |
-
processing_time: Time taken to process the request
|
| 44 |
-
"""
|
| 45 |
-
|
| 46 |
-
embedding: List[float]
|
| 47 |
-
dimension: int
|
| 48 |
-
model_id: str
|
| 49 |
-
processing_time: float
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
class BatchEmbedResponse(BaseModel):
|
| 53 |
-
"""
|
| 54 |
-
Response model for batch text embedding.
|
| 55 |
-
|
| 56 |
-
Attributes:
|
| 57 |
-
embeddings: List of generated embedding vectors
|
| 58 |
-
dimension: Dimensionality of the embeddings
|
| 59 |
-
model_id: Identifier of the model used
|
| 60 |
-
processing_time: Time taken to process the request
|
| 61 |
-
"""
|
| 62 |
-
|
| 63 |
-
embeddings: List[List[float]]
|
| 64 |
-
dimension: int
|
| 65 |
-
model_id: str
|
| 66 |
-
processing_time: float
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
class SparseEmbedding(BaseModel):
|
| 70 |
-
"""
|
| 71 |
-
Sparse embedding model.
|
| 72 |
-
|
| 73 |
-
Attributes:
|
| 74 |
-
text: The input text that was embedded
|
| 75 |
-
indices: Indices of non-zero elements in the sparse vector
|
| 76 |
-
values: Values corresponding to the indices
|
| 77 |
-
"""
|
| 78 |
-
|
| 79 |
-
text: Optional[str] = None
|
| 80 |
-
indices: List[int]
|
| 81 |
-
values: List[float]
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
class SparseEmbedResponse(BaseModel):
|
| 85 |
-
"""
|
| 86 |
-
Sparse embedding response model.
|
| 87 |
-
|
| 88 |
-
Attributes:
|
| 89 |
-
sparse_embedding: The generated sparse embedding
|
| 90 |
-
model_id: Identifier of the model used
|
| 91 |
-
processing_time: Time taken to process the request
|
| 92 |
-
"""
|
| 93 |
-
|
| 94 |
-
sparse_embedding: SparseEmbedding
|
| 95 |
-
model_id: str
|
| 96 |
-
processing_time: float
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
class BatchSparseEmbedResponse(BaseModel):
|
| 100 |
-
"""
|
| 101 |
-
Batch sparse embedding response model.
|
| 102 |
-
|
| 103 |
-
Attributes:
|
| 104 |
-
embeddings: List of generated sparse embeddings
|
| 105 |
-
model_id: Identifier of the model used
|
| 106 |
-
"""
|
| 107 |
-
|
| 108 |
-
embeddings: List[SparseEmbedding]
|
| 109 |
-
model_id: str
|
| 110 |
-
processing_time: float
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|