Spaces:
Running
Running
fahmiaziz98
commited on
Commit
·
d57816a
1
Parent(s):
58daf34
validate model type
Browse files- src/api/routers/embedding.py +77 -74
src/api/routers/embedding.py
CHANGED
|
@@ -32,6 +32,30 @@ from src.config.settings import get_settings
|
|
| 32 |
router = APIRouter(tags=["embeddings"])
|
| 33 |
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
@router.post(
|
| 36 |
"/embeddings",
|
| 37 |
response_model=DenseEmbedResponse,
|
|
@@ -46,13 +70,10 @@ async def create_embeddings_document(
|
|
| 46 |
"""
|
| 47 |
Generate embeddings for multiple texts.
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
settings: Application settings
|
| 53 |
|
| 54 |
-
Returns:
|
| 55 |
-
DenseEmbedResponse
|
| 56 |
Raises:
|
| 57 |
HTTPException: On validation or generation errors
|
| 58 |
"""
|
|
@@ -66,43 +87,35 @@ async def create_embeddings_document(
|
|
| 66 |
kwargs = extract_embedding_kwargs(request)
|
| 67 |
|
| 68 |
model = manager.get_model(request.model)
|
| 69 |
-
config = manager.model_configs
|
|
|
|
|
|
|
| 70 |
|
| 71 |
start_time = time.time()
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
input=request.input, **kwargs
|
| 76 |
-
)
|
| 77 |
-
processing_time = time.time() - start_time
|
| 78 |
-
|
| 79 |
-
data = []
|
| 80 |
-
for idx, embedding in enumerate(embeddings):
|
| 81 |
-
data.append(
|
| 82 |
-
EmbeddingObject(
|
| 83 |
-
object="embedding",
|
| 84 |
-
embedding=embedding,
|
| 85 |
-
index=idx,
|
| 86 |
-
)
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
# Calculate token usage
|
| 90 |
-
token_usage = TokenUsage(
|
| 91 |
-
prompt_tokens=count_tokens_batch(request.input),
|
| 92 |
-
total_tokens=count_tokens_batch(request.input),
|
| 93 |
-
)
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
)
|
| 101 |
-
else:
|
| 102 |
-
raise HTTPException(
|
| 103 |
-
status_code=status.HTTP_400_BAD_REQUEST,
|
| 104 |
-
detail=f"Model '{request.model}' is not a dense model. Type: {config.type}",
|
| 105 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
logger.info(
|
| 108 |
f"Generated {len(request.input)} embeddings "
|
|
@@ -138,12 +151,9 @@ async def create_sparse_embedding(
|
|
| 138 |
"""
|
| 139 |
Generate a single/batch sparse embedding.
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
Returns:
|
| 146 |
-
SparseEmbedResponse
|
| 147 |
|
| 148 |
Raises:
|
| 149 |
HTTPException: On validation or generation errors
|
|
@@ -153,41 +163,33 @@ async def create_sparse_embedding(
|
|
| 153 |
kwargs = extract_embedding_kwargs(request)
|
| 154 |
|
| 155 |
model = manager.get_model(request.model)
|
| 156 |
-
config = manager.model_configs
|
|
|
|
|
|
|
| 157 |
|
| 158 |
start_time = time.time()
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
sparse_embeddings.append(
|
| 169 |
-
SparseEmbedding(
|
| 170 |
-
text=request.input[idx],
|
| 171 |
-
indices=sparse_result["indices"],
|
| 172 |
-
values=sparse_result["values"],
|
| 173 |
-
)
|
| 174 |
-
)
|
| 175 |
-
|
| 176 |
-
response = SparseEmbedResponse(
|
| 177 |
-
embeddings=sparse_embeddings,
|
| 178 |
-
count=len(sparse_embeddings),
|
| 179 |
-
model=request.model
|
| 180 |
-
)
|
| 181 |
-
|
| 182 |
-
else:
|
| 183 |
-
raise HTTPException(
|
| 184 |
-
status_code=status.HTTP_400_BAD_REQUEST,
|
| 185 |
-
detail=f"Model '{request.model}' is not a sparse model. Type: {config.type}",
|
| 186 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
logger.info(
|
| 189 |
-
f"Generated {len(request.
|
| 190 |
-
f"in {processing_time:.3f}s ({len(request.
|
| 191 |
)
|
| 192 |
|
| 193 |
return response
|
|
@@ -199,8 +201,9 @@ async def create_sparse_embedding(
|
|
| 199 |
except EmbeddingGenerationError as e:
|
| 200 |
raise HTTPException(status_code=e.status_code, detail=e.message)
|
| 201 |
except Exception as e:
|
| 202 |
-
logger.exception("Unexpected error in
|
| 203 |
raise HTTPException(
|
| 204 |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 205 |
detail=f"Failed to create query embedding: {str(e)}",
|
| 206 |
)
|
|
|
|
|
|
| 32 |
router = APIRouter(tags=["embeddings"])
|
| 33 |
|
| 34 |
|
| 35 |
+
def _ensure_model_type(
|
| 36 |
+
config, expected_type: str, model_id: str
|
| 37 |
+
) -> None:
|
| 38 |
+
"""
|
| 39 |
+
Validate that the model configuration matches the expected type.
|
| 40 |
+
|
| 41 |
+
Raises:
|
| 42 |
+
HTTPException: If the model is missing or the type does not match.
|
| 43 |
+
"""
|
| 44 |
+
if config is None:
|
| 45 |
+
raise HTTPException(
|
| 46 |
+
status_code=status.HTTP_404_NOT_FOUND,
|
| 47 |
+
detail=f"Model '{model_id}' not found.",
|
| 48 |
+
)
|
| 49 |
+
if config.type != expected_type:
|
| 50 |
+
raise HTTPException(
|
| 51 |
+
status_code=status.HTTP_400_BAD_REQUEST,
|
| 52 |
+
detail=(
|
| 53 |
+
f"Model '{model_id}' is not a {expected_type.replace('-', ' ')} "
|
| 54 |
+
f"model. Detected type: {config.type}"
|
| 55 |
+
),
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
@router.post(
|
| 60 |
"/embeddings",
|
| 61 |
response_model=DenseEmbedResponse,
|
|
|
|
| 70 |
"""
|
| 71 |
Generate embeddings for multiple texts.
|
| 72 |
|
| 73 |
+
The endpoint validates the request, checks that the requested
|
| 74 |
+
model is a dense embedding model, and returns a
|
| 75 |
+
:class:`DenseEmbedResponse`.
|
|
|
|
| 76 |
|
|
|
|
|
|
|
| 77 |
Raises:
|
| 78 |
HTTPException: On validation or generation errors
|
| 79 |
"""
|
|
|
|
| 87 |
kwargs = extract_embedding_kwargs(request)
|
| 88 |
|
| 89 |
model = manager.get_model(request.model)
|
| 90 |
+
config = manager.model_configs.get(request.model)
|
| 91 |
+
|
| 92 |
+
_ensure_model_type(config, "embeddings", request.model)
|
| 93 |
|
| 94 |
start_time = time.time()
|
| 95 |
|
| 96 |
+
embeddings = model.embed(input=request.input, **kwargs)
|
| 97 |
+
processing_time = time.time() - start_time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
data = [
|
| 100 |
+
EmbeddingObject(
|
| 101 |
+
object="embedding",
|
| 102 |
+
embedding=embedding,
|
| 103 |
+
index=idx,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
)
|
| 105 |
+
for idx, embedding in enumerate(embeddings)
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
token_usage = TokenUsage(
|
| 109 |
+
prompt_tokens=count_tokens_batch(request.input),
|
| 110 |
+
total_tokens=count_tokens_batch(request.input),
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
response = DenseEmbedResponse(
|
| 114 |
+
object="list",
|
| 115 |
+
data=data,
|
| 116 |
+
model=request.model,
|
| 117 |
+
usage=token_usage,
|
| 118 |
+
)
|
| 119 |
|
| 120 |
logger.info(
|
| 121 |
f"Generated {len(request.input)} embeddings "
|
|
|
|
| 151 |
"""
|
| 152 |
Generate a single/batch sparse embedding.
|
| 153 |
|
| 154 |
+
The endpoint validates the request, checks that the requested
|
| 155 |
+
model is a sparse embedding model, and returns a
|
| 156 |
+
:class:`SparseEmbedResponse`.
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
Raises:
|
| 159 |
HTTPException: On validation or generation errors
|
|
|
|
| 163 |
kwargs = extract_embedding_kwargs(request)
|
| 164 |
|
| 165 |
model = manager.get_model(request.model)
|
| 166 |
+
config = manager.model_configs.get(request.model)
|
| 167 |
+
|
| 168 |
+
_ensure_model_type(config, "sparse-embeddings", request.model)
|
| 169 |
|
| 170 |
start_time = time.time()
|
| 171 |
|
| 172 |
+
sparse_results = model.embed(input=request.input, **kwargs)
|
| 173 |
+
processing_time = time.time() - start_time
|
| 174 |
+
|
| 175 |
+
sparse_embeddings = [
|
| 176 |
+
SparseEmbedding(
|
| 177 |
+
text=request.input[idx],
|
| 178 |
+
indices=sparse_result["indices"],
|
| 179 |
+
values=sparse_result["values"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
)
|
| 181 |
+
for idx, sparse_result in enumerate(sparse_results)
|
| 182 |
+
]
|
| 183 |
+
|
| 184 |
+
response = SparseEmbedResponse(
|
| 185 |
+
embeddings=sparse_embeddings,
|
| 186 |
+
count=len(sparse_embeddings),
|
| 187 |
+
model=request.model,
|
| 188 |
+
)
|
| 189 |
|
| 190 |
logger.info(
|
| 191 |
+
f"Generated {len(request.input)} embeddings "
|
| 192 |
+
f"in {processing_time:.3f}s ({len(request.input) / processing_time:.1f} texts/s)"
|
| 193 |
)
|
| 194 |
|
| 195 |
return response
|
|
|
|
| 201 |
except EmbeddingGenerationError as e:
|
| 202 |
raise HTTPException(status_code=e.status_code, detail=e.message)
|
| 203 |
except Exception as e:
|
| 204 |
+
logger.exception("Unexpected error in create_sparse_embedding")
|
| 205 |
raise HTTPException(
|
| 206 |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 207 |
detail=f"Failed to create query embedding: {str(e)}",
|
| 208 |
)
|
| 209 |
+
|