Spaces:
Sleeping
Sleeping
fahmiaziz98
commited on
Commit
Β·
e6b4aad
1
Parent(s):
80db4a8
init README
Browse files- .github/workflows/check.yml +0 -16
- API.md +0 -729
- README.md +143 -100
.github/workflows/check.yml
DELETED
|
@@ -1,16 +0,0 @@
|
|
| 1 |
-
name: Check file size
|
| 2 |
-
on:
|
| 3 |
-
pull_request:
|
| 4 |
-
branches: [main]
|
| 5 |
-
|
| 6 |
-
# to run this workflow manually from the Actions tab
|
| 7 |
-
workflow_dispatch:
|
| 8 |
-
|
| 9 |
-
jobs:
|
| 10 |
-
sync-to-hub:
|
| 11 |
-
runs-on: ubuntu-latest
|
| 12 |
-
steps:
|
| 13 |
-
- name: Check large files
|
| 14 |
-
uses: ActionsDesk/lfs-warning@v2.0
|
| 15 |
-
with:
|
| 16 |
-
filesizelimit: 10485760 # this is 10MB
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
API.md
DELETED
|
@@ -1,729 +0,0 @@
|
|
| 1 |
-
# π Unified Embedding API Documentation
|
| 2 |
-
|
| 3 |
-
Complete API reference for the Unified Embedding API v3.0.0.
|
| 4 |
-
|
| 5 |
-
**Features:** Dense Embeddings, Sparse Embeddings, and Document Reranking
|
| 6 |
-
|
| 7 |
-
---
|
| 8 |
-
|
| 9 |
-
## π Base URL
|
| 10 |
-
|
| 11 |
-
```
|
| 12 |
-
https://fahmiaziz-api-embedding.hf.space
|
| 13 |
-
```
|
| 14 |
-
|
| 15 |
-
For local development:
|
| 16 |
-
```
|
| 17 |
-
http://localhost:7860
|
| 18 |
-
```
|
| 19 |
-
|
| 20 |
-
---
|
| 21 |
-
|
| 22 |
-
## π Authentication
|
| 23 |
-
|
| 24 |
-
**Currently no authentication required.**
|
| 25 |
-
|
| 26 |
-
---
|
| 27 |
-
|
| 28 |
-
## π Endpoints Overview
|
| 29 |
-
|
| 30 |
-
| Endpoint | Method | Description |
|
| 31 |
-
|----------|--------|-------------|
|
| 32 |
-
| `/api/v1/embeddings/embed` | POST | Generate document embeddings |
|
| 33 |
-
| `/api/v1/embeddings/query` | POST | Generate query embeddings |
|
| 34 |
-
| `/api/v1/rerank` | POST | Rerank documents by relevance |
|
| 35 |
-
| `/api/v1/models` | GET | List available models |
|
| 36 |
-
| `/api/v1/models/{model_id}` | GET | Get model information |
|
| 37 |
-
| `/health` | GET | Health check |
|
| 38 |
-
| `/` | GET | API information |
|
| 39 |
-
|
| 40 |
-
---
|
| 41 |
-
|
| 42 |
-
## π Embedding Endpoints
|
| 43 |
-
|
| 44 |
-
### 1. Generate Document Embeddings
|
| 45 |
-
|
| 46 |
-
**`POST /api/v1/embeddings/embed`**
|
| 47 |
-
|
| 48 |
-
Generate embeddings for document texts. Supports both single and batch processing.
|
| 49 |
-
|
| 50 |
-
#### Request Body
|
| 51 |
-
|
| 52 |
-
```json
|
| 53 |
-
{
|
| 54 |
-
"texts": ["string"], // Required: List of texts (1-100 items)
|
| 55 |
-
"model_id": "string", // Required: Model identifier
|
| 56 |
-
"prompt": "string", // Optional: Instruction prompt
|
| 57 |
-
"options": { // Optional: Embedding parameters
|
| 58 |
-
"normalize_embeddings": true,
|
| 59 |
-
"batch_size": 32,
|
| 60 |
-
"max_length": 512,
|
| 61 |
-
"show_progress_bar": false
|
| 62 |
-
}
|
| 63 |
-
}
|
| 64 |
-
```
|
| 65 |
-
|
| 66 |
-
#### Parameters
|
| 67 |
-
|
| 68 |
-
| Field | Type | Required | Description |
|
| 69 |
-
|-------|------|----------|-------------|
|
| 70 |
-
| `texts` | array[string] | β
Yes | List of texts to embed (min: 1, max: 100) |
|
| 71 |
-
| `model_id` | string | β
Yes | Model identifier (e.g., "qwen3-0.6b") |
|
| 72 |
-
| `prompt` | string | β No | Instruction prompt for the model |
|
| 73 |
-
| `options` | object | β No | Additional embedding parameters |
|
| 74 |
-
|
| 75 |
-
#### Options Parameters
|
| 76 |
-
|
| 77 |
-
| Field | Type | Default | Description |
|
| 78 |
-
|-------|------|---------|-------------|
|
| 79 |
-
| `normalize_embeddings` | boolean | false | L2 normalize output embeddings |
|
| 80 |
-
| `batch_size` | integer | 32 | Processing batch size (1-256) |
|
| 81 |
-
| `max_length` | integer | 512 | Maximum sequence length (1-8192) |
|
| 82 |
-
| `show_progress_bar` | boolean | false | Display progress during encoding |
|
| 83 |
-
| `precision` | string | float32 | Precision ("float32", "int8", "binary") |
|
| 84 |
-
|
| 85 |
-
#### Response - Single Text (Dense)
|
| 86 |
-
|
| 87 |
-
```json
|
| 88 |
-
{
|
| 89 |
-
"embedding": [0.123, -0.456, 0.789, ...],
|
| 90 |
-
"dimension": 768,
|
| 91 |
-
"model_id": "qwen3-0.6b",
|
| 92 |
-
"processing_time": 0.0523
|
| 93 |
-
}
|
| 94 |
-
```
|
| 95 |
-
|
| 96 |
-
#### Response - Batch (Dense)
|
| 97 |
-
|
| 98 |
-
```json
|
| 99 |
-
{
|
| 100 |
-
"embeddings": [
|
| 101 |
-
[0.123, -0.456, ...],
|
| 102 |
-
[0.234, 0.567, ...],
|
| 103 |
-
[0.345, -0.678, ...]
|
| 104 |
-
],
|
| 105 |
-
"dimension": 768,
|
| 106 |
-
"count": 3,
|
| 107 |
-
"model_id": "qwen3-0.6b",
|
| 108 |
-
"processing_time": 0.1245
|
| 109 |
-
}
|
| 110 |
-
```
|
| 111 |
-
|
| 112 |
-
#### Response - Single Text (Sparse)
|
| 113 |
-
|
| 114 |
-
```json
|
| 115 |
-
{
|
| 116 |
-
"sparse_embedding": {
|
| 117 |
-
"text": "Hello world",
|
| 118 |
-
"indices": [10, 25, 42, 100],
|
| 119 |
-
"values": [0.85, 0.62, 0.91, 0.73]
|
| 120 |
-
},
|
| 121 |
-
"model_id": "splade-pp-v2",
|
| 122 |
-
"processing_time": 0.0421
|
| 123 |
-
}
|
| 124 |
-
```
|
| 125 |
-
|
| 126 |
-
#### Response - Batch (Sparse)
|
| 127 |
-
|
| 128 |
-
```json
|
| 129 |
-
{
|
| 130 |
-
"embeddings": [
|
| 131 |
-
{
|
| 132 |
-
"text": "First doc",
|
| 133 |
-
"indices": [10, 25, 42],
|
| 134 |
-
"values": [0.85, 0.62, 0.91]
|
| 135 |
-
},
|
| 136 |
-
{
|
| 137 |
-
"text": "Second doc",
|
| 138 |
-
"indices": [15, 30, 50],
|
| 139 |
-
"values": [0.73, 0.88, 0.65]
|
| 140 |
-
}
|
| 141 |
-
],
|
| 142 |
-
"count": 2,
|
| 143 |
-
"model_id": "splade-pp-v2",
|
| 144 |
-
"processing_time": 0.0892
|
| 145 |
-
}
|
| 146 |
-
```
|
| 147 |
-
|
| 148 |
-
#### Examples
|
| 149 |
-
|
| 150 |
-
**Single Text (Dense Model):**
|
| 151 |
-
```bash
|
| 152 |
-
curl -X 'POST' \
|
| 153 |
-
'https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/embed' \
|
| 154 |
-
-H 'accept: application/json' \
|
| 155 |
-
-H 'Content-Type: application/json' \
|
| 156 |
-
-d '{
|
| 157 |
-
"texts": ["What is artificial intelligence?"],
|
| 158 |
-
"model_id": "qwen3-0.6b"
|
| 159 |
-
}'
|
| 160 |
-
```
|
| 161 |
-
|
| 162 |
-
**Single Text (Sparse Model):**
|
| 163 |
-
```bash
|
| 164 |
-
curl -X 'POST' \
|
| 165 |
-
'https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/embed' \
|
| 166 |
-
-H 'accept: application/json' \
|
| 167 |
-
-H 'Content-Type: application/json' \
|
| 168 |
-
-d '{
|
| 169 |
-
"texts": ["Hello world"],
|
| 170 |
-
"model_id": "splade-pp-v2"
|
| 171 |
-
}'
|
| 172 |
-
```
|
| 173 |
-
|
| 174 |
-
**Batch (with Options):**
|
| 175 |
-
```bash
|
| 176 |
-
curl -X 'POST' \
|
| 177 |
-
'https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/embed' \
|
| 178 |
-
-H 'accept: application/json' \
|
| 179 |
-
-H 'Content-Type: application/json' \
|
| 180 |
-
-d '{
|
| 181 |
-
"texts": [
|
| 182 |
-
"First document to embed",
|
| 183 |
-
"Second document to embed",
|
| 184 |
-
"Third document to embed"
|
| 185 |
-
],
|
| 186 |
-
"model_id": "qwen3-0.6b",
|
| 187 |
-
"options": {
|
| 188 |
-
"normalize_embeddings": true,
|
| 189 |
-
"batch_size": 32
|
| 190 |
-
}
|
| 191 |
-
}'
|
| 192 |
-
```
|
| 193 |
-
|
| 194 |
-
**Python Example:**
|
| 195 |
-
```python
|
| 196 |
-
import requests
|
| 197 |
-
|
| 198 |
-
url = "https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/embed"
|
| 199 |
-
|
| 200 |
-
payload = {
|
| 201 |
-
"texts": ["Hello world"],
|
| 202 |
-
"model_id": "qwen3-0.6b"
|
| 203 |
-
}
|
| 204 |
-
|
| 205 |
-
response = requests.post(url, json=payload)
|
| 206 |
-
data = response.json()
|
| 207 |
-
|
| 208 |
-
print(f"Embedding dimension: {data['dimension']}")
|
| 209 |
-
print(f"Processing time: {data['processing_time']:.3f}s")
|
| 210 |
-
```
|
| 211 |
-
|
| 212 |
-
---
|
| 213 |
-
|
| 214 |
-
### 2. Generate Query Embeddings
|
| 215 |
-
|
| 216 |
-
**`POST /api/v1/embeddings/query`**
|
| 217 |
-
|
| 218 |
-
Generate embeddings optimized for search queries. Some models differentiate between query and document embeddings.
|
| 219 |
-
|
| 220 |
-
#### Request Body
|
| 221 |
-
|
| 222 |
-
Same as `/embed` endpoint.
|
| 223 |
-
|
| 224 |
-
```json
|
| 225 |
-
{
|
| 226 |
-
"texts": ["string"],
|
| 227 |
-
"model_id": "string",
|
| 228 |
-
"prompt": "string",
|
| 229 |
-
"options": {}
|
| 230 |
-
}
|
| 231 |
-
```
|
| 232 |
-
|
| 233 |
-
#### Response
|
| 234 |
-
|
| 235 |
-
Same format as `/embed` endpoint.
|
| 236 |
-
|
| 237 |
-
#### Examples
|
| 238 |
-
|
| 239 |
-
**Single Query:**
|
| 240 |
-
```bash
|
| 241 |
-
curl -X 'POST' \
|
| 242 |
-
'https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/query' \
|
| 243 |
-
-H 'accept: application/json' \
|
| 244 |
-
-H 'Content-Type: application/json' \
|
| 245 |
-
-d '{
|
| 246 |
-
"texts": ["What is machine learning?"],
|
| 247 |
-
"model_id": "qwen3-0.6b",
|
| 248 |
-
"prompt": "Represent this query for retrieval",
|
| 249 |
-
"options": {
|
| 250 |
-
"normalize_embeddings": true
|
| 251 |
-
}
|
| 252 |
-
}'
|
| 253 |
-
```
|
| 254 |
-
|
| 255 |
-
**Batch Queries:**
|
| 256 |
-
```bash
|
| 257 |
-
curl -X 'POST' \
|
| 258 |
-
'https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/query' \
|
| 259 |
-
-H 'accept: application/json' \
|
| 260 |
-
-H 'Content-Type: application/json' \
|
| 261 |
-
-d '{
|
| 262 |
-
"texts": [
|
| 263 |
-
"First query",
|
| 264 |
-
"Second query",
|
| 265 |
-
"Third query"
|
| 266 |
-
],
|
| 267 |
-
"model_id": "qwen3-0.6b"
|
| 268 |
-
}'
|
| 269 |
-
```
|
| 270 |
-
|
| 271 |
-
**Python Example:**
|
| 272 |
-
```python
|
| 273 |
-
import requests
|
| 274 |
-
|
| 275 |
-
url = "https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings/query"
|
| 276 |
-
|
| 277 |
-
payload = {
|
| 278 |
-
"texts": ["What is AI?"],
|
| 279 |
-
"model_id": "qwen3-0.6b",
|
| 280 |
-
"options": {
|
| 281 |
-
"normalize_embeddings": True
|
| 282 |
-
}
|
| 283 |
-
}
|
| 284 |
-
|
| 285 |
-
response = requests.post(url, json=payload)
|
| 286 |
-
embedding = response.json()["embedding"]
|
| 287 |
-
```
|
| 288 |
-
|
| 289 |
-
---
|
| 290 |
-
|
| 291 |
-
### 3. Rerank Documents
|
| 292 |
-
|
| 293 |
-
**`POST /api/v1/rerank`**
|
| 294 |
-
|
| 295 |
-
Rerank documents based on their relevance to a query using CrossEncoder models.
|
| 296 |
-
|
| 297 |
-
#### Request Body
|
| 298 |
-
|
| 299 |
-
```json
|
| 300 |
-
{
|
| 301 |
-
"query": "string", // Required: Search query
|
| 302 |
-
"documents": ["string"], // Required: List of documents (min: 1)
|
| 303 |
-
"model_id": "string", // Required: Reranking model identifier
|
| 304 |
-
"top_k": integer, // Required: Number of top results to return
|
| 305 |
-
}
|
| 306 |
-
```
|
| 307 |
-
|
| 308 |
-
#### Parameters
|
| 309 |
-
|
| 310 |
-
| Field | Type | Required | Description |
|
| 311 |
-
|-------|------|----------|-------------|
|
| 312 |
-
| `query` | string | β
Yes | Search query text |
|
| 313 |
-
| `documents` | array[string] | β
Yes | List of documents to rerank (min: 1) |
|
| 314 |
-
| `model_id` | string | β
Yes | Reranking model identifier |
|
| 315 |
-
| `top_k` | integer | β
Yes | Maximum number of results to return |
|
| 316 |
-
|
| 317 |
-
#### Response
|
| 318 |
-
|
| 319 |
-
```json
|
| 320 |
-
{
|
| 321 |
-
"model_id": "jina-reranker-v3",
|
| 322 |
-
"processing_time": 0.56,
|
| 323 |
-
"query": "Python for data science",
|
| 324 |
-
"results": [
|
| 325 |
-
{
|
| 326 |
-
"index": 0,
|
| 327 |
-
"score": 0.95,
|
| 328 |
-
"text": "Python is excellent for data science"
|
| 329 |
-
},
|
| 330 |
-
{
|
| 331 |
-
"index": 2,
|
| 332 |
-
"score": 0.73,
|
| 333 |
-
"text": "R is also used in data science"
|
| 334 |
-
}
|
| 335 |
-
]
|
| 336 |
-
}
|
| 337 |
-
```
|
| 338 |
-
|
| 339 |
-
#### Response Fields
|
| 340 |
-
|
| 341 |
-
| Field | Type | Description |
|
| 342 |
-
|-------|------|-------------|
|
| 343 |
-
| `model_id` | string | Model identifier used |
|
| 344 |
-
| `processing_time` | float | Processing time in seconds |
|
| 345 |
-
| `query` | string | Original search query |
|
| 346 |
-
| `results` | array | Reranked documents with scores |
|
| 347 |
-
| `results[].index` | integer | Original index in input documents |
|
| 348 |
-
| `results[].score` | float | Relevance score (0-1, normalized) |
|
| 349 |
-
| `results[].text` | string | Document text |
|
| 350 |
-
|
| 351 |
-
#### Examples
|
| 352 |
-
|
| 353 |
-
**Basic Reranking:**
|
| 354 |
-
```bash
|
| 355 |
-
curl -X 'POST' \
|
| 356 |
-
'https://fahmiaziz-api-embedding.hf.space/api/v1/rerank' \
|
| 357 |
-
-H 'Content-Type: application/json' \
|
| 358 |
-
-d '{
|
| 359 |
-
"query": "Python for data science",
|
| 360 |
-
"documents": [
|
| 361 |
-
"Python is great for data science",
|
| 362 |
-
"Java is used for enterprise applications",
|
| 363 |
-
"R is also used in data science",
|
| 364 |
-
"JavaScript is for web development"
|
| 365 |
-
],
|
| 366 |
-
"model_id": "jina-reranker-v3",
|
| 367 |
-
"top_k": 2
|
| 368 |
-
}'
|
| 369 |
-
```
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
**Python Example:**
|
| 373 |
-
```python
|
| 374 |
-
import requests
|
| 375 |
-
|
| 376 |
-
url = "https://fahmiaziz-api-embedding.hf.space/api/v1/rerank"
|
| 377 |
-
|
| 378 |
-
payload = {
|
| 379 |
-
"query": "best programming language for beginners",
|
| 380 |
-
"documents": [
|
| 381 |
-
"Python is beginner-friendly with simple syntax",
|
| 382 |
-
"C++ is powerful but complex for beginners",
|
| 383 |
-
"JavaScript is essential for web development",
|
| 384 |
-
"Rust offers memory safety but steep learning curve"
|
| 385 |
-
],
|
| 386 |
-
"model_id": "jina-reranker-v3",
|
| 387 |
-
"top_k": 2
|
| 388 |
-
}
|
| 389 |
-
|
| 390 |
-
response = requests.post(url, json=payload)
|
| 391 |
-
data = response.json()
|
| 392 |
-
|
| 393 |
-
print(f"Top result: {data['results'][0]['text']}")
|
| 394 |
-
print(f"Score: {data['results'][0]['score']:.3f}")
|
| 395 |
-
```
|
| 396 |
-
|
| 397 |
-
**JavaScript Example:**
|
| 398 |
-
```javascript
|
| 399 |
-
const url = "https://fahmiaziz-api-embedding.hf.space/api/v1/rerank";
|
| 400 |
-
|
| 401 |
-
const response = await fetch(url, {
|
| 402 |
-
method: "POST",
|
| 403 |
-
headers: { "Content-Type": "application/json" },
|
| 404 |
-
body: JSON.stringify({
|
| 405 |
-
query: "AI applications",
|
| 406 |
-
documents: [
|
| 407 |
-
"Computer vision for image recognition",
|
| 408 |
-
"Recipe for chocolate cake",
|
| 409 |
-
"Natural language processing for chatbots",
|
| 410 |
-
"Travel guide to Paris"
|
| 411 |
-
],
|
| 412 |
-
model_id: "jina-reranker-v3",
|
| 413 |
-
top_k: 2
|
| 414 |
-
})
|
| 415 |
-
});
|
| 416 |
-
|
| 417 |
-
const { results } = await response.json();
|
| 418 |
-
console.log("Top results:", results);
|
| 419 |
-
```
|
| 420 |
-
|
| 421 |
-
---
|
| 422 |
-
|
| 423 |
-
## π€ Model Management
|
| 424 |
-
|
| 425 |
-
### 3. List Available Models
|
| 426 |
-
|
| 427 |
-
**`GET /api/v1/models`**
|
| 428 |
-
|
| 429 |
-
Get a list of all available embedding models.
|
| 430 |
-
|
| 431 |
-
#### Response
|
| 432 |
-
|
| 433 |
-
```json
|
| 434 |
-
{
|
| 435 |
-
"models": [
|
| 436 |
-
{
|
| 437 |
-
"id": "qwen3-0.6b",
|
| 438 |
-
"name": "Qwen/Qwen3-Embedding-0.6B",
|
| 439 |
-
"type": "embeddings",
|
| 440 |
-
"loaded": true,
|
| 441 |
-
"repository": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B"
|
| 442 |
-
},
|
| 443 |
-
{
|
| 444 |
-
"id": "splade-pp-v2",
|
| 445 |
-
"name": "prithivida/Splade_PP_en_v2",
|
| 446 |
-
"type": "sparse-embeddings",
|
| 447 |
-
"loaded": true,
|
| 448 |
-
"repository": "https://huggingface.co/prithivida/Splade_PP_en_v2"
|
| 449 |
-
}
|
| 450 |
-
],
|
| 451 |
-
"total": 2
|
| 452 |
-
}
|
| 453 |
-
```
|
| 454 |
-
|
| 455 |
-
#### Example
|
| 456 |
-
|
| 457 |
-
```bash
|
| 458 |
-
curl -X 'GET' \
|
| 459 |
-
'https://fahmiaziz-api-embedding.hf.space/api/v1/models' \
|
| 460 |
-
-H 'accept: application/json'
|
| 461 |
-
```
|
| 462 |
-
|
| 463 |
-
---
|
| 464 |
-
|
| 465 |
-
### 4. Get Model Information
|
| 466 |
-
|
| 467 |
-
**`GET /api/v1/models/{model_id}`**
|
| 468 |
-
|
| 469 |
-
Get detailed information about a specific model.
|
| 470 |
-
|
| 471 |
-
#### Parameters
|
| 472 |
-
|
| 473 |
-
| Parameter | Type | Required | Description |
|
| 474 |
-
|-----------|------|----------|-------------|
|
| 475 |
-
| `model_id` | string | β
Yes | Model identifier |
|
| 476 |
-
|
| 477 |
-
#### Response
|
| 478 |
-
|
| 479 |
-
```json
|
| 480 |
-
{
|
| 481 |
-
"id": "qwen3-0.6b",
|
| 482 |
-
"name": "Qwen/Qwen3-Embedding-0.6B",
|
| 483 |
-
"type": "embeddings",
|
| 484 |
-
"loaded": true,
|
| 485 |
-
"repository": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B"
|
| 486 |
-
}
|
| 487 |
-
```
|
| 488 |
-
|
| 489 |
-
#### Example
|
| 490 |
-
|
| 491 |
-
```bash
|
| 492 |
-
curl -X 'GET' \
|
| 493 |
-
'https://fahmiaziz-api-embedding.hf.space/api/v1/models/qwen3-0.6b' \
|
| 494 |
-
-H 'accept: application/json'
|
| 495 |
-
```
|
| 496 |
-
|
| 497 |
-
---
|
| 498 |
-
|
| 499 |
-
## π₯ System Endpoints
|
| 500 |
-
|
| 501 |
-
### 5. Health Check
|
| 502 |
-
|
| 503 |
-
**`GET /health`**
|
| 504 |
-
|
| 505 |
-
Check API health status.
|
| 506 |
-
|
| 507 |
-
#### Response
|
| 508 |
-
|
| 509 |
-
```json
|
| 510 |
-
{
|
| 511 |
-
"status": "ok",
|
| 512 |
-
"total_models": 2,
|
| 513 |
-
"loaded_models": 2,
|
| 514 |
-
"startup_complete": true
|
| 515 |
-
}
|
| 516 |
-
```
|
| 517 |
-
|
| 518 |
-
#### Example
|
| 519 |
-
|
| 520 |
-
```bash
|
| 521 |
-
curl -X 'GET' \
|
| 522 |
-
'https://fahmiaziz-api-embedding.hf.space/health' \
|
| 523 |
-
-H 'accept: application/json'
|
| 524 |
-
```
|
| 525 |
-
|
| 526 |
-
---
|
| 527 |
-
|
| 528 |
-
### 6. API Information
|
| 529 |
-
|
| 530 |
-
**`GET /`**
|
| 531 |
-
|
| 532 |
-
Get basic API information.
|
| 533 |
-
|
| 534 |
-
#### Response
|
| 535 |
-
|
| 536 |
-
```json
|
| 537 |
-
{
|
| 538 |
-
"message": "Unified Embedding API - Dense & Sparse Embeddings",
|
| 539 |
-
"version": "3.0.0",
|
| 540 |
-
"docs_url": "/docs"
|
| 541 |
-
}
|
| 542 |
-
```
|
| 543 |
-
|
| 544 |
-
---
|
| 545 |
-
|
| 546 |
-
## β Error Responses
|
| 547 |
-
|
| 548 |
-
All errors follow this format:
|
| 549 |
-
|
| 550 |
-
```json
|
| 551 |
-
{
|
| 552 |
-
"detail": "Error message description"
|
| 553 |
-
}
|
| 554 |
-
```
|
| 555 |
-
|
| 556 |
-
### HTTP Status Codes
|
| 557 |
-
|
| 558 |
-
| Code | Description |
|
| 559 |
-
|------|-------------|
|
| 560 |
-
| 200 | Success |
|
| 561 |
-
| 400 | Bad Request - Invalid input |
|
| 562 |
-
| 404 | Not Found - Model not found |
|
| 563 |
-
| 422 | Unprocessable Entity - Validation error |
|
| 564 |
-
| 500 | Internal Server Error |
|
| 565 |
-
| 503 | Service Unavailable - Server not ready |
|
| 566 |
-
|
| 567 |
-
### Common Errors
|
| 568 |
-
|
| 569 |
-
**Model Not Found (404):**
|
| 570 |
-
```json
|
| 571 |
-
{
|
| 572 |
-
"detail": "Model 'unknown-model' not found in configuration"
|
| 573 |
-
}
|
| 574 |
-
```
|
| 575 |
-
|
| 576 |
-
**Validation Error (422):**
|
| 577 |
-
```json
|
| 578 |
-
{
|
| 579 |
-
"detail": [
|
| 580 |
-
{
|
| 581 |
-
"loc": ["body", "texts"],
|
| 582 |
-
"msg": "texts list cannot be empty",
|
| 583 |
-
"type": "value_error"
|
| 584 |
-
}
|
| 585 |
-
]
|
| 586 |
-
}
|
| 587 |
-
```
|
| 588 |
-
|
| 589 |
-
**Batch Too Large (422):**
|
| 590 |
-
```json
|
| 591 |
-
{
|
| 592 |
-
"detail": "Batch size (150) exceeds maximum (100)"
|
| 593 |
-
}
|
| 594 |
-
```
|
| 595 |
-
|
| 596 |
-
---
|
| 597 |
-
|
| 598 |
-
## π¦ Available Models
|
| 599 |
-
|
| 600 |
-
### Dense Embedding Models
|
| 601 |
-
|
| 602 |
-
| Model ID | Name | Dimension | Description |
|
| 603 |
-
|----------|------|-----------|-------------|
|
| 604 |
-
| `qwen3-0.6b` | Qwen/Qwen3-Embedding-0.6B | 768 | Efficient multilingual embeddings |
|
| 605 |
-
|
| 606 |
-
### Sparse Embedding Models
|
| 607 |
-
|
| 608 |
-
| Model ID | Name | Type | Description |
|
| 609 |
-
|----------|------|------|-------------|
|
| 610 |
-
| `splade-pp-v2` | prithivida/Splade_PP_en_v2 | Sparse | SPLADE++ English v2 |
|
| 611 |
-
|
| 612 |
-
### Reranking Models
|
| 613 |
-
|
| 614 |
-
| Model ID | Name | Type | Description |
|
| 615 |
-
|----------|------|------|-------------|
|
| 616 |
-
| `jina-reranker-v3` | jinaai/jina-reranker-v3-base-en | CrossEncoder | High-quality reranking (English) |
|
| 617 |
-
| `bge-v2-m3` | BAAI/bge-reranker-v2-m3 | CrossEncoder | Multilingual reranking |
|
| 618 |
-
|
| 619 |
-
---
|
| 620 |
-
|
| 621 |
-
## π§ Rate Limits
|
| 622 |
-
|
| 623 |
-
**Current Limits:**
|
| 624 |
-
- Max text length: 8,192 characters
|
| 625 |
-
- Max batch size: 100 texts per request
|
| 626 |
-
- No rate limiting (subject to server resources)
|
| 627 |
-
|
| 628 |
-
---
|
| 629 |
-
|
| 630 |
-
## π‘ Best Practices
|
| 631 |
-
|
| 632 |
-
### 1. Batch Processing
|
| 633 |
-
Always batch multiple texts together for better performance:
|
| 634 |
-
```python
|
| 635 |
-
# β Bad - Multiple requests
|
| 636 |
-
for text in texts:
|
| 637 |
-
response = requests.post(url, json={"texts": [text], ...})
|
| 638 |
-
|
| 639 |
-
# β
Good - Single batch request
|
| 640 |
-
response = requests.post(url, json={"texts": texts, ...})
|
| 641 |
-
```
|
| 642 |
-
|
| 643 |
-
### 2. Normalize Embeddings for Similarity
|
| 644 |
-
For cosine similarity, always normalize:
|
| 645 |
-
```python
|
| 646 |
-
payload = {
|
| 647 |
-
"texts": ["text"],
|
| 648 |
-
"model_id": "qwen3-0.6b",
|
| 649 |
-
"options": {"normalize_embeddings": True}
|
| 650 |
-
}
|
| 651 |
-
```
|
| 652 |
-
|
| 653 |
-
### 3. Model Selection
|
| 654 |
-
- **Dense models** (qwen3-0.6b): Best for semantic similarity
|
| 655 |
-
- **Sparse models** (splade-pp-v2): Best for keyword matching + semantic
|
| 656 |
-
- **Rerank models** (jina-reranker-v3): Best for re-scoring top candidates
|
| 657 |
-
|
| 658 |
-
### 4. Two-Stage Retrieval (Recommended for RAG)
|
| 659 |
-
```python
|
| 660 |
-
# Stage 1: Fast retrieval with embeddings (top 100)
|
| 661 |
-
query_embedding = embed_query(query)
|
| 662 |
-
candidates = vector_search(query_embedding, top_k=100)
|
| 663 |
-
|
| 664 |
-
# Stage 2: Precise reranking (top 10)
|
| 665 |
-
reranked = rerank(
|
| 666 |
-
query=query,
|
| 667 |
-
documents=[c["text"] for c in candidates],
|
| 668 |
-
model_id="jina-reranker-v3",
|
| 669 |
-
top_k=10
|
| 670 |
-
)
|
| 671 |
-
```
|
| 672 |
-
|
| 673 |
-
### 5. Error Handling
|
| 674 |
-
Always handle errors gracefully:
|
| 675 |
-
```python
|
| 676 |
-
try:
|
| 677 |
-
response = requests.post(url, json=payload)
|
| 678 |
-
response.raise_for_status()
|
| 679 |
-
data = response.json()
|
| 680 |
-
except requests.exceptions.HTTPError as e:
|
| 681 |
-
print(f"HTTP error: {e}")
|
| 682 |
-
except requests.exceptions.RequestException as e:
|
| 683 |
-
print(f"Request failed: {e}")
|
| 684 |
-
```
|
| 685 |
-
|
| 686 |
-
---
|
| 687 |
-
|
| 688 |
-
## π Troubleshooting
|
| 689 |
-
|
| 690 |
-
### Empty Response
|
| 691 |
-
- Check `texts` field is not empty
|
| 692 |
-
- Validate `model_id` exists
|
| 693 |
-
|
| 694 |
-
### Slow Performance
|
| 695 |
-
- Use batch requests instead of multiple single requests
|
| 696 |
-
- Reduce `batch_size` in options if memory issues
|
| 697 |
-
- Check model is preloaded (first request is slower)
|
| 698 |
-
|
| 699 |
-
### Connection Errors
|
| 700 |
-
- Verify base URL is correct
|
| 701 |
-
- Check network connectivity
|
| 702 |
-
- Ensure server is running (`/health` endpoint)
|
| 703 |
-
|
| 704 |
-
---
|
| 705 |
-
|
| 706 |
-
## π Support
|
| 707 |
-
|
| 708 |
-
- **Documentation**: [GitHub README](https://github.com/fahmiaziz/unified-embedding-api)
|
| 709 |
-
- **Issues**: [GitHub Issues](https://github.com/fahmiaziz/unified-embedding-api/issues)
|
| 710 |
-
- **Hugging Face Space**: [fahmiaziz/api-embedding](https://huggingface.co/spaces/fahmiaziz/api-embedding)
|
| 711 |
-
|
| 712 |
-
---
|
| 713 |
-
|
| 714 |
-
## π Changelog
|
| 715 |
-
|
| 716 |
-
### v3.0.0 (Current)
|
| 717 |
-
- β¨ Added reranking endpoint (`/api/v1/rerank`)
|
| 718 |
-
- β¨ Support for CrossEncoder models
|
| 719 |
-
- β¨ Unified batch-only response format
|
| 720 |
-
- β¨ Flexible kwargs support
|
| 721 |
-
- β¨ In-memory caching
|
| 722 |
-
- β¨ Improved error handling
|
| 723 |
-
- β¨ Comprehensive documentation
|
| 724 |
-
- π Fixed type hint errors in RerankModel
|
| 725 |
-
- π Fixed duplicate parameter errors in rerank endpoint
|
| 726 |
-
|
| 727 |
-
---
|
| 728 |
-
|
| 729 |
-
**Last Updated**: 2025-11-02
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -7,8 +7,6 @@ sdk: docker
|
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
|
| 10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 11 |
-
|
| 12 |
# π§ Unified Embedding API
|
| 13 |
|
| 14 |
> π§© Unified API for all your Embedding, Sparse & Reranking Models β plug and play with any model from Hugging Face or your own fine-tuned versions.
|
|
@@ -19,7 +17,7 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
|
|
| 19 |
|
| 20 |
**Unified Embedding API** is a modular and open-source **RAG-ready API** built for developers who want a simple, unified way to access **dense**, **sparse**, and **reranking** models.
|
| 21 |
|
| 22 |
-
It
|
| 23 |
|
| 24 |
β οΈ **Note:** This is a development API.
|
| 25 |
For production deployment, host it on cloud platforms such as **Hugging Face TEI**, **AWS**, **GCP**, or any cloud provider of your choice.
|
|
@@ -28,13 +26,13 @@ For production deployment, host it on cloud platforms such as **Hugging Face TEI
|
|
| 28 |
|
| 29 |
## π§© Features
|
| 30 |
|
| 31 |
-
- π§ **Unified Interface** β One API to handle dense, sparse, and reranking models
|
| 32 |
-
- β‘ **Batch Processing** β Automatic single/batch
|
| 33 |
- π§ **Flexible Parameters** β Full control via kwargs and options
|
| 34 |
-
-
|
| 35 |
-
- π **RAG Support** β Perfect base for Retrieval-Augmented Generation systems
|
| 36 |
-
- β‘ **Fast & Lightweight** β Powered by FastAPI and optimized with async processing
|
| 37 |
-
- π§° **Extendable** β
|
| 38 |
|
| 39 |
---
|
| 40 |
|
|
@@ -48,8 +46,8 @@ unified-embedding-api/
|
|
| 48 |
β β βββ routes/
|
| 49 |
β β βββ embeddings.py # endpoint sparse & dense
|
| 50 |
β β βββ models.py
|
| 51 |
-
β β
|
| 52 |
-
β β βββ rerank.py
|
| 53 |
β βββ core/
|
| 54 |
β β βββ base.py
|
| 55 |
β β βββ config.py
|
|
@@ -57,16 +55,16 @@ unified-embedding-api/
|
|
| 57 |
β β βββ manager.py
|
| 58 |
β βββ models/
|
| 59 |
β β βββ embeddings/
|
| 60 |
-
β β β βββ dense.py
|
| 61 |
-
β β β
|
| 62 |
-
β β β βββ rank.py
|
| 63 |
β β βββ schemas/
|
| 64 |
β β βββ common.py
|
| 65 |
β β βββ requests.py
|
| 66 |
β β βββ responses.py
|
| 67 |
β βββ config/
|
| 68 |
β β βββ settings.py
|
| 69 |
-
β β βββ models.yaml
|
| 70 |
β βββ utils/
|
| 71 |
β βββ logger.py
|
| 72 |
β βββ validators.py
|
|
@@ -77,7 +75,9 @@ unified-embedding-api/
|
|
| 77 |
βββ Dockerfile
|
| 78 |
βββ README.md
|
| 79 |
```
|
|
|
|
| 80 |
---
|
|
|
|
| 81 |
## π§© Model Selection
|
| 82 |
|
| 83 |
Default configuration is optimized for **CPU 2vCPU / 16GB RAM**. See [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for model recommendations and memory usage reference.
|
|
@@ -105,7 +105,7 @@ Deploy your **Custom Embedding API** on **Hugging Face Spaces** β free, fast,
|
|
| 105 |
π [fahmiaziz/api-embedding](https://huggingface.co/spaces/fahmiaziz/api-embedding)
|
| 106 |
Click **β―** (three dots) β **Duplicate this Space**
|
| 107 |
|
| 108 |
-
2. **Add HF_TOKEN environment variable
|
| 109 |
|
| 110 |
3. **Clone your Space locally:**
|
| 111 |
Click **β―** β **Clone repository**
|
|
@@ -129,14 +129,14 @@ Deploy your **Custom Embedding API** on **Hugging Face Spaces** β free, fast,
|
|
| 129 |
git push
|
| 130 |
```
|
| 131 |
|
| 132 |
-
6. **Access your API:**
|
| 133 |
-
|
| 134 |
```
|
| 135 |
https://YOUR_USERNAME-api-embedding.hf.space
|
| 136 |
https://YOUR_USERNAME-api-embedding.hf.space/docs # Interactive docs
|
| 137 |
```
|
| 138 |
|
| 139 |
-
That
|
| 140 |
|
| 141 |
### **2οΈβ£ Run Locally (NOT RECOMMENDED)**
|
| 142 |
|
|
@@ -169,104 +169,86 @@ docker build -t embedding-api .
|
|
| 169 |
docker run -p 7860:7860 embedding-api
|
| 170 |
```
|
| 171 |
|
|
|
|
|
|
|
| 172 |
## π Usage Examples
|
| 173 |
|
| 174 |
-
### **Python**
|
| 175 |
|
| 176 |
```python
|
| 177 |
import requests
|
| 178 |
|
| 179 |
-
|
| 180 |
|
| 181 |
# Single embedding
|
| 182 |
-
response = requests.post(
|
| 183 |
-
"
|
| 184 |
-
"
|
| 185 |
})
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
# Batch embeddings
|
| 189 |
-
response = requests.post(
|
| 190 |
-
"
|
| 191 |
-
|
| 192 |
-
"Second document",
|
| 193 |
-
"Third document"
|
| 194 |
-
],
|
| 195 |
-
"model_id": "qwen3-0.6b",
|
| 196 |
"options": {
|
| 197 |
"normalize_embeddings": True
|
| 198 |
}
|
| 199 |
})
|
| 200 |
-
|
| 201 |
```
|
| 202 |
|
| 203 |
### **cURL**
|
| 204 |
|
| 205 |
```bash
|
| 206 |
-
#
|
| 207 |
-
curl -X POST "
|
| 208 |
-H "Content-Type: application/json" \
|
| 209 |
-d '{
|
| 210 |
-
"
|
| 211 |
-
"
|
| 212 |
-
"model_id": "qwen3-0.6b"
|
| 213 |
}'
|
| 214 |
|
| 215 |
-
#
|
| 216 |
-
curl -X POST "
|
| 217 |
-H "Content-Type: application/json" \
|
| 218 |
-d '{
|
| 219 |
-
"
|
| 220 |
-
"
|
| 221 |
}'
|
| 222 |
|
| 223 |
# Reranking
|
| 224 |
-
curl -X POST "
|
| 225 |
-H "Content-Type: application/json" \
|
| 226 |
-d '{
|
| 227 |
-
|
| 228 |
-
"
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
"query": "Python best programming languages for data science",
|
| 236 |
-
"top_k": 3
|
| 237 |
-
}'
|
| 238 |
-
|
| 239 |
-
# Query embedding with options
|
| 240 |
-
curl -X POST "http://localhost:7860/api/v1/embeddings/query" \
|
| 241 |
-
-H "Content-Type: application/json" \
|
| 242 |
-
-d '{
|
| 243 |
-
"texts": ["What is machine learning?"],
|
| 244 |
-
"model_id": "qwen3-0.6b",
|
| 245 |
-
"options": {
|
| 246 |
-
"normalize_embeddings": true,
|
| 247 |
-
"batch_size": 32
|
| 248 |
-
}
|
| 249 |
}'
|
| 250 |
```
|
| 251 |
|
| 252 |
### **JavaScript/TypeScript**
|
| 253 |
|
| 254 |
```typescript
|
| 255 |
-
const
|
| 256 |
|
| 257 |
-
|
|
|
|
| 258 |
method: "POST",
|
| 259 |
-
headers: {
|
| 260 |
-
"Content-Type": "application/json",
|
| 261 |
-
},
|
| 262 |
body: JSON.stringify({
|
| 263 |
texts: ["Hello world"],
|
| 264 |
model_id: "qwen3-0.6b",
|
| 265 |
}),
|
| 266 |
});
|
| 267 |
|
| 268 |
-
const
|
| 269 |
-
console.log(
|
| 270 |
```
|
| 271 |
|
| 272 |
---
|
|
@@ -275,17 +257,91 @@ console.log(data.embedding);
|
|
| 275 |
|
| 276 |
| Endpoint | Method | Description |
|
| 277 |
|----------|--------|-------------|
|
| 278 |
-
| `/api/v1/embeddings
|
| 279 |
-
| `/api/v1/
|
| 280 |
-
| `/api/v1/rerank` | POST | Rerank documents
|
| 281 |
| `/api/v1/models` | GET | List available models |
|
| 282 |
| `/api/v1/models/{model_id}` | GET | Get model information |
|
| 283 |
| `/health` | GET | Health check |
|
| 284 |
| `/` | GET | API information |
|
| 285 |
| `/docs` | GET | Interactive API documentation |
|
| 286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
Contributions are welcome! Please:
|
| 291 |
|
|
@@ -295,15 +351,6 @@ Contributions are welcome! Please:
|
|
| 295 |
4. Push to the branch (`git push origin feature/amazing-feature`)
|
| 296 |
5. Open a Pull Request
|
| 297 |
|
| 298 |
-
**Development Setup:**
|
| 299 |
-
|
| 300 |
-
```bash
|
| 301 |
-
git clone https://github.com/fahmiaziz/unified-embedding-api.git
|
| 302 |
-
cd unified-embedding-api
|
| 303 |
-
pip install -r requirements-dev.txt
|
| 304 |
-
pre-commit install # (optional)
|
| 305 |
-
```
|
| 306 |
-
|
| 307 |
---
|
| 308 |
|
| 309 |
## π Resources
|
|
@@ -311,12 +358,12 @@ pre-commit install # (optional)
|
|
| 311 |
- [API Documentation](API.md)
|
| 312 |
- [Sentence Transformers](https://www.sbert.net/)
|
| 313 |
- [FastAPI Docs](https://fastapi.tiangolo.com/)
|
|
|
|
| 314 |
- [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
|
| 315 |
- [Hugging Face Spaces](https://huggingface.co/docs/hub/spaces)
|
| 316 |
-
- [Deploy Applications on Hugging Face Spaces
|
| 317 |
-
- [
|
| 318 |
-
- [Duplicate & Clone
|
| 319 |
-
---
|
| 320 |
|
| 321 |
---
|
| 322 |
|
|
@@ -331,27 +378,23 @@ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file
|
|
| 331 |
- **Sentence Transformers** for the embedding models
|
| 332 |
- **FastAPI** for the excellent web framework
|
| 333 |
- **Hugging Face** for model hosting and Spaces
|
|
|
|
| 334 |
- **Open Source Community** for inspiration and support
|
| 335 |
|
| 336 |
---
|
| 337 |
|
| 338 |
## π Support
|
| 339 |
|
| 340 |
-
- **Issues:** [GitHub Issues](https://github.com/
|
| 341 |
-
- **Discussions:** [GitHub Discussions](https://github.com/
|
| 342 |
- **Hugging Face Space:** [fahmiaziz/api-embedding](https://huggingface.co/spaces/fahmiaziz/api-embedding)
|
| 343 |
|
| 344 |
---
|
| 345 |
|
| 346 |
-
> β¨ βUnify your embeddings. Simplify your AI stack.β
|
| 347 |
-
|
| 348 |
<div align="center">
|
| 349 |
|
| 350 |
-
**β Star this repo if you find it useful!**
|
| 351 |
-
|
| 352 |
Made with β€οΈ by the Open-Source Community
|
| 353 |
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
|
|
|
|
|
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
|
|
|
|
|
|
|
| 10 |
# π§ Unified Embedding API
|
| 11 |
|
| 12 |
> π§© Unified API for all your Embedding, Sparse & Reranking Models β plug and play with any model from Hugging Face or your own fine-tuned versions.
|
|
|
|
| 17 |
|
| 18 |
**Unified Embedding API** is a modular and open-source **RAG-ready API** built for developers who want a simple, unified way to access **dense**, **sparse**, and **reranking** models.
|
| 19 |
|
| 20 |
+
It's designed for **vector search**, **semantic retrieval**, and **AI-powered pipelines** β all controlled from a single `config.yaml` file.
|
| 21 |
|
| 22 |
β οΈ **Note:** This is a development API.
|
| 23 |
For production deployment, host it on cloud platforms such as **Hugging Face TEI**, **AWS**, **GCP**, or any cloud provider of your choice.
|
|
|
|
| 26 |
|
| 27 |
## π§© Features
|
| 28 |
|
| 29 |
+
- π§ **Unified Interface** β One API to handle dense, sparse, and reranking models
|
| 30 |
+
- β‘ **Batch Processing** β Automatic single/batch detection
|
| 31 |
- π§ **Flexible Parameters** β Full control via kwargs and options
|
| 32 |
+
- π **OpenAI Compatible** β Works with OpenAI client libraries
|
| 33 |
+
- π **RAG Support** β Perfect base for Retrieval-Augmented Generation systems
|
| 34 |
+
- β‘ **Fast & Lightweight** β Powered by FastAPI and optimized with async processing
|
| 35 |
+
- π§° **Extendable** β Switch models instantly via `config.yaml` and add your own models effortlessly
|
| 36 |
|
| 37 |
---
|
| 38 |
|
|
|
|
| 46 |
β β βββ routes/
|
| 47 |
β β βββ embeddings.py # endpoint sparse & dense
|
| 48 |
β β βββ models.py
|
| 49 |
+
β β βββ health.py
|
| 50 |
+
β β βββ rerank.py # endpoint reranking
|
| 51 |
β βββ core/
|
| 52 |
β β βββ base.py
|
| 53 |
β β βββ config.py
|
|
|
|
| 55 |
β β βββ manager.py
|
| 56 |
β βββ models/
|
| 57 |
β β βββ embeddings/
|
| 58 |
+
β β β βββ dense.py # dense model
|
| 59 |
+
β β β βββ sparse.py # sparse model
|
| 60 |
+
β β β βββ rank.py # reranking model
|
| 61 |
β β βββ schemas/
|
| 62 |
β β βββ common.py
|
| 63 |
β β βββ requests.py
|
| 64 |
β β βββ responses.py
|
| 65 |
β βββ config/
|
| 66 |
β β βββ settings.py
|
| 67 |
+
β β βββ models.yaml # add/change models here
|
| 68 |
β βββ utils/
|
| 69 |
β βββ logger.py
|
| 70 |
β βββ validators.py
|
|
|
|
| 75 |
βββ Dockerfile
|
| 76 |
βββ README.md
|
| 77 |
```
|
| 78 |
+
|
| 79 |
---
|
| 80 |
+
|
| 81 |
## π§© Model Selection
|
| 82 |
|
| 83 |
Default configuration is optimized for **CPU 2vCPU / 16GB RAM**. See [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for model recommendations and memory usage reference.
|
|
|
|
| 105 |
π [fahmiaziz/api-embedding](https://huggingface.co/spaces/fahmiaziz/api-embedding)
|
| 106 |
Click **β―** (three dots) β **Duplicate this Space**
|
| 107 |
|
| 108 |
+
2. **Add HF_TOKEN environment variable**. Make sure your space is public
|
| 109 |
|
| 110 |
3. **Clone your Space locally:**
|
| 111 |
Click **β―** β **Clone repository**
|
|
|
|
| 129 |
git push
|
| 130 |
```
|
| 131 |
|
| 132 |
+
6. **Access your API:**
|
| 133 |
+
Click **β―** β **Embed this Space** β copy **Direct URL**
|
| 134 |
```
|
| 135 |
https://YOUR_USERNAME-api-embedding.hf.space
|
| 136 |
https://YOUR_USERNAME-api-embedding.hf.space/docs # Interactive docs
|
| 137 |
```
|
| 138 |
|
| 139 |
+
That's it! You now have a live embedding API endpoint powered by your models.
|
| 140 |
|
| 141 |
### **2οΈβ£ Run Locally (NOT RECOMMENDED)**
|
| 142 |
|
|
|
|
| 169 |
docker run -p 7860:7860 embedding-api
|
| 170 |
```
|
| 171 |
|
| 172 |
+
---
|
| 173 |
+
|
| 174 |
## π Usage Examples
|
| 175 |
|
| 176 |
+
### **Python with Native API**
|
| 177 |
|
| 178 |
```python
|
| 179 |
import requests
|
| 180 |
|
| 181 |
+
base_url = "https://fahmiaziz-api-embedding.hf.space/api/v1"
|
| 182 |
|
| 183 |
# Single embedding
|
| 184 |
+
response = requests.post(f"{base_url}/embeddings", json={
|
| 185 |
+
"input": "What is artificial intelligence?",
|
| 186 |
+
"model": "qwen3-0.6b"
|
| 187 |
})
|
| 188 |
+
embeddings = response.json()["data"]
|
| 189 |
+
|
| 190 |
+
# Batch embeddings with options
|
| 191 |
+
response = requests.post(f"{base_url}/embeddings", json={
|
| 192 |
+
"input": ["First document", "Second document", "Third document"],
|
| 193 |
+
"model": "qwen3-0.6b",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
"options": {
|
| 195 |
"normalize_embeddings": True
|
| 196 |
}
|
| 197 |
})
|
| 198 |
+
batch_embeddings = response.json()["data"]
|
| 199 |
```
|
| 200 |
|
| 201 |
### **cURL**
|
| 202 |
|
| 203 |
```bash
|
| 204 |
+
# Dense embeddings
|
| 205 |
+
curl -X POST "https://fahmiaziz-api-embedding.hf.space/api/v1/embeddings" \
|
| 206 |
-H "Content-Type: application/json" \
|
| 207 |
-d '{
|
| 208 |
+
"input": ["Hello world"],
|
| 209 |
+
"model": "qwen3-0.6b"
|
|
|
|
| 210 |
}'
|
| 211 |
|
| 212 |
+
# Sparse embeddings
|
| 213 |
+
curl -X POST "https://fahmiaziz-api-embedding.hf.space/api/v1/embed_sparse" \
|
| 214 |
-H "Content-Type: application/json" \
|
| 215 |
-d '{
|
| 216 |
+
"input": ["First doc", "Second doc", "Third doc"],
|
| 217 |
+
"model": "splade-pp-v2"
|
| 218 |
}'
|
| 219 |
|
| 220 |
# Reranking
|
| 221 |
+
curl -X POST "https://fahmiaziz-api-embedding.hf.space/api/v1/rerank" \
|
| 222 |
-H "Content-Type: application/json" \
|
| 223 |
-d '{
|
| 224 |
+
"query": "Python for data science",
|
| 225 |
+
"documents": [
|
| 226 |
+
"Python is great for data science",
|
| 227 |
+
"Java is used for enterprise apps",
|
| 228 |
+
"R is for statistical analysis"
|
| 229 |
+
],
|
| 230 |
+
"model": "bge-v2-m3",
|
| 231 |
+
"top_k": 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
}'
|
| 233 |
```
|
| 234 |
|
| 235 |
### **JavaScript/TypeScript**
|
| 236 |
|
| 237 |
```typescript
|
| 238 |
+
const baseUrl = "https://fahmiaziz-api-embedding.hf.space/api/v1";
|
| 239 |
|
| 240 |
+
// Using fetch
|
| 241 |
+
const response = await fetch(`${baseUrl}/embeddings`, {
|
| 242 |
method: "POST",
|
| 243 |
+
headers: { "Content-Type": "application/json" },
|
|
|
|
|
|
|
| 244 |
body: JSON.stringify({
|
| 245 |
texts: ["Hello world"],
|
| 246 |
model_id: "qwen3-0.6b",
|
| 247 |
}),
|
| 248 |
});
|
| 249 |
|
| 250 |
+
const { embeddings } = await response.json();
|
| 251 |
+
console.log(embeddings);
|
| 252 |
```
|
| 253 |
|
| 254 |
---
|
|
|
|
| 257 |
|
| 258 |
| Endpoint | Method | Description |
|
| 259 |
|----------|--------|-------------|
|
| 260 |
+
| `/api/v1/embeddings` | POST | Generate embeddings (OpenAI compatible) |
|
| 261 |
+
| `/api/v1/embed_sparse` | POST | Generate sparse embeddings |
|
| 262 |
+
| `/api/v1/rerank` | POST | Rerank documents by relevance |
|
| 263 |
| `/api/v1/models` | GET | List available models |
|
| 264 |
| `/api/v1/models/{model_id}` | GET | Get model information |
|
| 265 |
| `/health` | GET | Health check |
|
| 266 |
| `/` | GET | API information |
|
| 267 |
| `/docs` | GET | Interactive API documentation |
|
| 268 |
|
| 269 |
+
---
|
| 270 |
+
|
| 271 |
+
## π OpenAI Client Compatibility
|
| 272 |
+
|
| 273 |
+
This API is **fully compatible** with OpenAI's client libraries, making it a drop-in replacement for OpenAI's embedding API.
|
| 274 |
|
| 275 |
+
### **Why use OpenAI client?**
|
| 276 |
+
|
| 277 |
+
β
**Familiar API** β Same interface as OpenAI
|
| 278 |
+
β
**Type Safety** β Full type hints and IDE support
|
| 279 |
+
β
**Error Handling** β Built-in retry logic and error handling
|
| 280 |
+
β
**Async Support** β Native async/await support
|
| 281 |
+
β
**Easy Migration** β Switch between OpenAI and self-hosted seamlessly
|
| 282 |
+
|
| 283 |
+
### **Supported Features**
|
| 284 |
+
|
| 285 |
+
| Feature | Supported | Notes |
|
| 286 |
+
|---------|-----------|-------|
|
| 287 |
+
| `embeddings.create()` | β
Yes | Single and batch inputs |
|
| 288 |
+
| `input` as string | β
Yes | Auto-converted to list |
|
| 289 |
+
| `input` as list | β
Yes | Batch processing |
|
| 290 |
+
| `model` parameter | β
Yes | Use your model IDs |
|
| 291 |
+
| `encoding_format` | β οΈ Partial | Always returns `float` |
|
| 292 |
+
|
| 293 |
+
### **Example with OpenAI Client (Compatible!)**
|
| 294 |
+
|
| 295 |
+
```python
|
| 296 |
+
from openai import OpenAI
|
| 297 |
+
|
| 298 |
+
# Initialize client with your API endpoint
|
| 299 |
+
client = OpenAI(
|
| 300 |
+
base_url="https://fahmiaziz-api-embedding.hf.space/api/v1",
|
| 301 |
+
api_key="-" # API key not required, but must be present
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
# Generate embeddings
|
| 305 |
+
embedding = client.embeddings.create(
|
| 306 |
+
input="Hello",
|
| 307 |
+
model="qwen3-0.6b"
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
# Access results
|
| 311 |
+
for item in embedding.data:
|
| 312 |
+
print(f"Embedding: {item.embedding[:5]}...") # First 5 dimensions
|
| 313 |
+
print(f"Index: {item.index}")
|
| 314 |
+
```
|
| 315 |
+
|
| 316 |
+
### **Async OpenAI Client**
|
| 317 |
+
|
| 318 |
+
```python
|
| 319 |
+
from openai import AsyncOpenAI
|
| 320 |
+
|
| 321 |
+
# Initialize async client
|
| 322 |
+
client = AsyncOpenAI(
|
| 323 |
+
base_url="https://fahmiaziz-api-embedding.hf.space/api/v1",
|
| 324 |
+
api_key="-"
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
# Generate embeddings asynchronously
|
| 328 |
+
async def get_embeddings():
|
| 329 |
+
try:
|
| 330 |
+
embedding = await client.embeddings.create(
|
| 331 |
+
input=["Hello", "World", "AI"],
|
| 332 |
+
model="qwen3-0.6b"
|
| 333 |
+
)
|
| 334 |
+
return embedding
|
| 335 |
+
except Exception as e:
|
| 336 |
+
print(f"Error: {e}")
|
| 337 |
+
|
| 338 |
+
# Use in async context
|
| 339 |
+
embeddings = await get_embeddings()
|
| 340 |
+
```
|
| 341 |
+
|
| 342 |
+
---
|
| 343 |
+
|
| 344 |
+
## π€ Contributing
|
| 345 |
|
| 346 |
Contributions are welcome! Please:
|
| 347 |
|
|
|
|
| 351 |
4. Push to the branch (`git push origin feature/amazing-feature`)
|
| 352 |
5. Open a Pull Request
|
| 353 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
---
|
| 355 |
|
| 356 |
## π Resources
|
|
|
|
| 358 |
- [API Documentation](API.md)
|
| 359 |
- [Sentence Transformers](https://www.sbert.net/)
|
| 360 |
- [FastAPI Docs](https://fastapi.tiangolo.com/)
|
| 361 |
+
- [OpenAI Python Client](https://github.com/openai/openai-python)
|
| 362 |
- [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
|
| 363 |
- [Hugging Face Spaces](https://huggingface.co/docs/hub/spaces)
|
| 364 |
+
- [Deploy Applications on Hugging Face Spaces](https://huggingface.co/blog/HemanthSai7/deploy-applications-on-huggingface-spaces)
|
| 365 |
+
- [Sync HF Spaces with GitHub](https://github.com/ruslanmv/How-to-Sync-Hugging-Face-Spaces-with-a-GitHub-Repository)
|
| 366 |
+
- [Duplicate & Clone Spaces](https://huggingface.co/docs/hub/spaces-overview#duplicating-a-space)
|
|
|
|
| 367 |
|
| 368 |
---
|
| 369 |
|
|
|
|
| 378 |
- **Sentence Transformers** for the embedding models
|
| 379 |
- **FastAPI** for the excellent web framework
|
| 380 |
- **Hugging Face** for model hosting and Spaces
|
| 381 |
+
- **OpenAI** for the client library design
|
| 382 |
- **Open Source Community** for inspiration and support
|
| 383 |
|
| 384 |
---
|
| 385 |
|
| 386 |
## π Support
|
| 387 |
|
| 388 |
+
- **Issues:** [GitHub Issues](https://github.com/fahmiaziz98/unified-embedding-api/issues)
|
| 389 |
+
- **Discussions:** [GitHub Discussions](https://github.com/fahmiaziz98/unified-embedding-api/discussions)
|
| 390 |
- **Hugging Face Space:** [fahmiaziz/api-embedding](https://huggingface.co/spaces/fahmiaziz/api-embedding)
|
| 391 |
|
| 392 |
---
|
| 393 |
|
|
|
|
|
|
|
| 394 |
<div align="center">
|
| 395 |
|
|
|
|
|
|
|
| 396 |
Made with β€οΈ by the Open-Source Community
|
| 397 |
|
| 398 |
+
> β¨ "Unify your embeddings. Simplify your AI stack."
|
|
|
|
|
|
|
| 399 |
|
| 400 |
+
</div>
|