File size: 30,814 Bytes
ae27454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3865f49
ae27454
 
 
 
 
 
 
 
 
 
3865f49
ae27454
 
 
 
 
 
 
 
3865f49
ae27454
 
 
 
 
 
 
 
 
3865f49
ae27454
 
 
 
 
 
3865f49
ae27454
 
 
 
 
 
 
 
 
3865f49
ae27454
 
 
 
 
 
 
 
3865f49
ae27454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3865f49
 
ae27454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3865f49
 
ae27454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3865f49
 
 
 
 
 
 
ae27454
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
import gradio as gr
from sentence_transformers import SentenceTransformer
import json
import numpy as np
import os
import httpx
import hashlib

# Load environment variables from .env file (optional, for local development)
try:
    from dotenv import load_dotenv
    load_dotenv()
    print("βœ… Loaded .env file")
except ImportError:
    print("ℹ️ python-dotenv not installed, using system environment variables")

# Google GenAI SDK (new library) - optional, graceful fallback if not available
try:
    from google import genai
    from google.genai import types
    GENAI_AVAILABLE = True
    print("βœ… google-genai loaded successfully")
except ImportError as e:
    GENAI_AVAILABLE = False
    print(f"⚠️ google-genai not available: {e}")
    genai = None
    types = None

# ==================== CONFIGURATION ====================

# Model - akan auto-download dari HF Hub saat pertama kali
HF_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"

# Path lokal untuk development (opsional, diabaikan jika tidak ada)
LOCAL_MODEL_PATH = r"E:\huggingface_models\hub\models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2\snapshots"

# Supabase configuration (dari environment variables untuk keamanan)
# Di HF Space: Settings > Repository secrets
# Di lokal: set environment variable atau gunakan default untuk testing
SUPABASE_URL = os.environ.get("SUPABASE_URL", "")
SUPABASE_KEY = os.environ.get("SUPABASE_KEY", "")

# Gemini API configuration with key rotation
GEMINI_MODEL = os.environ.get("GEMINI_MODEL", "gemini-2.5-pro")  # atau gemini-2.5-flash, gemini-2.5-flash-lite

# Load multiple API keys for rotation
GEMINI_API_KEYS = []
for i in range(1, 10):  # Support up to 9 keys
    key = os.environ.get(f"GEMINI_API_KEY_{i}", "")
    if key:
        GEMINI_API_KEYS.append(key)

# Fallback to single key if no numbered keys found
if not GEMINI_API_KEYS:
    single_key = os.environ.get("GEMINI_API_KEY", "")
    if single_key:
        GEMINI_API_KEYS.append(single_key)

# Track current key index for rotation
current_key_index = 0

def get_gemini_client():
    """Get Gemini client with current API key"""
    global current_key_index
    if not GENAI_AVAILABLE or genai is None:
        return None
    if not GEMINI_API_KEYS:
        return None
    return genai.Client(api_key=GEMINI_API_KEYS[current_key_index])

def rotate_api_key():
    """Rotate to next API key"""
    global current_key_index
    if len(GEMINI_API_KEYS) > 1:
        current_key_index = (current_key_index + 1) % len(GEMINI_API_KEYS)
        print(f"πŸ”„ Rotated to API key #{current_key_index + 1}")
    return current_key_index

def call_gemini_with_retry(prompt: str, max_retries: int = None):
    """Call Gemini API with automatic key rotation on rate limit"""
    global current_key_index
    
    if not GEMINI_API_KEYS:
        return None, "No API keys configured"
    
    if max_retries is None:
        max_retries = len(GEMINI_API_KEYS)
    
    last_error = None
    
    for attempt in range(max_retries):
        try:
            client = get_gemini_client()
            response = client.models.generate_content(
                model=GEMINI_MODEL,
                contents=prompt
            )
            return response, None
            
        except Exception as e:
            error_str = str(e).lower()
            last_error = str(e)
            
            # Check if rate limit error
            if "429" in error_str or "rate" in error_str or "quota" in error_str or "resource" in error_str:
                print(f"⚠️ Rate limit hit on key #{current_key_index + 1}: {e}")
                rotate_api_key()
                continue
            else:
                # Non-rate-limit error, don't retry
                return None, str(e)
    
    return None, f"All API keys exhausted. Last error: {last_error}"

# Initialize and print status
if GEMINI_API_KEYS:
    print(f"βœ… Gemini configured with {len(GEMINI_API_KEYS)} API key(s)")
    print(f"   Model: {GEMINI_MODEL}")
else:
    print("⚠️ No Gemini API keys found")

def get_model_path():
    """Deteksi environment dan return path model yang sesuai"""
    # Cek apakah folder lokal ada
    if os.path.exists(LOCAL_MODEL_PATH):
        # Cari snapshot terbaru
        snapshots = os.listdir(LOCAL_MODEL_PATH)
        if snapshots:
            return os.path.join(LOCAL_MODEL_PATH, snapshots[0])
    # Fallback ke HF Hub (untuk deployment di Space)
    return HF_MODEL_NAME

# Load model saat startup
print("Loading model...")
model = None
try:
    model_path = get_model_path()
    print(f"Using model from: {model_path}")
    model = SentenceTransformer(model_path)
    print("βœ… Model loaded successfully!")
except Exception as e:
    print(f"❌ Failed to load model: {e}")
    model = None


def get_embedding(text: str):
    """Generate embedding untuk single text"""
    if model is None:
        return {"error": "Model not loaded"}
    if not text or not text.strip():
        return {"error": "Text tidak boleh kosong"}
    
    try:
        embedding = model.encode(text.strip())
        return {"embedding": embedding.tolist()}
    except Exception as e:
        return {"error": str(e)}


def get_embeddings_batch(texts_json: str):
    """Generate embeddings untuk multiple texts (JSON array)"""
    try:
        texts = json.loads(texts_json)
        if not isinstance(texts, list):
            return {"error": "Input harus JSON array"}
        
        if len(texts) == 0:
            return {"error": "Array tidak boleh kosong"}
        
        # Filter empty strings
        texts = [t.strip() for t in texts if t and t.strip()]
        
        if len(texts) == 0:
            return {"error": "Semua text kosong"}
        
        embeddings = model.encode(texts)
        return {"embeddings": embeddings.tolist()}
    except json.JSONDecodeError:
        return {"error": "Invalid JSON format. Gunakan format: [\"teks 1\", \"teks 2\"]"}
    except Exception as e:
        return {"error": str(e)}


def calculate_similarity(text1: str, text2: str):
    """Hitung cosine similarity antara dua teks"""
    if not text1 or not text1.strip():
        return {"error": "Text 1 tidak boleh kosong"}
    if not text2 or not text2.strip():
        return {"error": "Text 2 tidak boleh kosong"}
    
    try:
        embeddings = model.encode([text1.strip(), text2.strip()])
        
        # Cosine similarity
        similarity = np.dot(embeddings[0], embeddings[1]) / (
            np.linalg.norm(embeddings[0]) * np.linalg.norm(embeddings[1])
        )
        
        return {
            "similarity": float(similarity),
            "percentage": f"{similarity * 100:.2f}%"
        }
    except Exception as e:
        return {"error": str(e)}


# ==================== SUPABASE PROXY FUNCTIONS ====================

def get_supabase_headers():
    """Get headers untuk Supabase API calls"""
    return {
        "apikey": SUPABASE_KEY,
        "Authorization": f"Bearer {SUPABASE_KEY}",
        "Content-Type": "application/json",
        "Prefer": "return=representation"
    }


def db_get_all_embeddings():
    """Ambil semua embeddings dari Supabase"""
    if not SUPABASE_URL or not SUPABASE_KEY:
        return {"error": "Supabase not configured"}
    
    try:
        url = f"{SUPABASE_URL}/rest/v1/proposal_embeddings?select=nim,content_hash,embedding_combined,embedding_judul,embedding_deskripsi,embedding_problem,embedding_metode,nama,judul"
        
        with httpx.Client(timeout=30.0) as client:
            response = client.get(url, headers=get_supabase_headers())
        
        if response.status_code == 200:
            return {"data": response.json(), "count": len(response.json())}
        else:
            return {"error": f"Supabase error: {response.status_code}", "detail": response.text}
    except Exception as e:
        return {"error": str(e)}


def db_get_embedding(nim: str, content_hash: str):
    """Ambil embedding untuk NIM dan content_hash tertentu"""
    if not SUPABASE_URL or not SUPABASE_KEY:
        return {"error": "Supabase not configured"}
    
    try:
        url = f"{SUPABASE_URL}/rest/v1/proposal_embeddings?nim=eq.{nim}&content_hash=eq.{content_hash}&select=*"
        
        with httpx.Client(timeout=30.0) as client:
            response = client.get(url, headers=get_supabase_headers())
        
        if response.status_code == 200:
            data = response.json()
            return {"data": data[0] if data else None, "found": len(data) > 0}
        else:
            return {"error": f"Supabase error: {response.status_code}"}
    except Exception as e:
        return {"error": str(e)}


def db_save_embedding(data_json: str):
    """Simpan embedding ke Supabase (upsert)"""
    if not SUPABASE_URL or not SUPABASE_KEY:
        return {"error": "Supabase not configured"}
    
    try:
        data = json.loads(data_json)
        
        # Validate required fields
        if not data.get("nim") or not data.get("content_hash"):
            return {"error": "nim and content_hash are required"}
        
        if not data.get("embedding_combined"):
            return {"error": "embedding_combined is required"}
        
        url = f"{SUPABASE_URL}/rest/v1/proposal_embeddings"
        headers = get_supabase_headers()
        headers["Prefer"] = "resolution=merge-duplicates,return=representation"
        
        payload = {
            "nim": data["nim"],
            "content_hash": data["content_hash"],
            "embedding_combined": data["embedding_combined"],
            "embedding_judul": data.get("embedding_judul"),
            "embedding_deskripsi": data.get("embedding_deskripsi"),
            "embedding_problem": data.get("embedding_problem"),
            "embedding_metode": data.get("embedding_metode"),
            "nama": data.get("nama"),
            "judul": data.get("judul")
        }
        
        with httpx.Client(timeout=30.0) as client:
            response = client.post(url, headers=headers, json=payload)
        
        if response.status_code in [200, 201]:
            return {"success": True, "data": response.json()}
        else:
            return {"error": f"Supabase error: {response.status_code}", "detail": response.text}
    except json.JSONDecodeError:
        return {"error": "Invalid JSON format"}
    except Exception as e:
        return {"error": str(e)}


def db_check_connection():
    """Test koneksi ke Supabase"""
    if not SUPABASE_URL or not SUPABASE_KEY:
        return {"connected": False, "error": "Supabase URL or KEY not configured"}
    
    try:
        url = f"{SUPABASE_URL}/rest/v1/proposal_embeddings?select=id&limit=1"
        
        with httpx.Client(timeout=10.0) as client:
            response = client.get(url, headers=get_supabase_headers())
        
        return {
            "connected": response.status_code == 200,
            "status_code": response.status_code,
            "supabase_url": SUPABASE_URL[:30] + "..." if len(SUPABASE_URL) > 30 else SUPABASE_URL
        }
    except Exception as e:
        return {"connected": False, "error": str(e)}


# ==================== LLM CACHE FUNCTIONS (SUPABASE) ====================

def db_get_llm_analysis(pair_hash: str):
    """Ambil cached LLM analysis dari Supabase by pair_hash"""
    if not SUPABASE_URL or not SUPABASE_KEY:
        return None
    
    try:
        url = f"{SUPABASE_URL}/rest/v1/llm_analysis?pair_hash=eq.{pair_hash}&select=*"
        
        with httpx.Client(timeout=10.0) as client:
            response = client.get(url, headers=get_supabase_headers())
        
        if response.status_code == 200:
            data = response.json()
            if data and len(data) > 0:
                result = data[0]
                # Parse similar_aspects from JSONB
                if isinstance(result.get('similar_aspects'), str):
                    result['similar_aspects'] = json.loads(result['similar_aspects'])
                result['from_cache'] = True
                return result
        return None
    except Exception as e:
        print(f"Error getting cached LLM analysis: {e}")
        return None


def db_save_llm_analysis(pair_hash: str, proposal1_judul: str, proposal2_judul: str, result: dict):
    """Simpan LLM analysis result ke Supabase"""
    if not SUPABASE_URL or not SUPABASE_KEY:
        return False
    
    try:
        url = f"{SUPABASE_URL}/rest/v1/llm_analysis"
        headers = get_supabase_headers()
        headers["Prefer"] = "resolution=merge-duplicates"  # Upsert
        
        payload = {
            "pair_hash": pair_hash,
            "proposal1_judul": proposal1_judul[:500] if proposal1_judul else "",
            "proposal2_judul": proposal2_judul[:500] if proposal2_judul else "",
            "similarity_score": result.get("similarity_score"),
            "verdict": result.get("verdict"),
            "reasoning": result.get("reasoning"),
            "saran": result.get("saran"),
            "similar_aspects": json.dumps(result.get("similar_aspects", {})),
            "differentiator": result.get("differentiator"),
            "model_used": result.get("model_used", GEMINI_MODEL)
        }
        
        with httpx.Client(timeout=10.0) as client:
            response = client.post(url, headers=headers, json=payload)
        
        if response.status_code in [200, 201]:
            print(f"βœ… LLM result cached: {pair_hash[:8]}...")
            return True
        else:
            print(f"⚠️ Failed to cache LLM result: {response.status_code}")
            return False
    except Exception as e:
        print(f"Error saving LLM analysis: {e}")
        return False


# ==================== LLM FUNCTIONS (GEMINI) ====================

def generate_pair_hash(proposal1: dict, proposal2: dict) -> str:
    """Generate unique hash untuk pasangan proposal"""
    def proposal_hash(p):
        content = f"{p.get('nim', '')}|{p.get('judul', '')}|{p.get('deskripsi', '')}|{p.get('problem', '')}|{p.get('metode', '')}"
        return hashlib.md5(content.encode()).hexdigest()[:16]
    
    h1 = proposal_hash(proposal1)
    h2 = proposal_hash(proposal2)
    # Sort untuk konsistensi (A,B = B,A)
    sorted_hashes = sorted([h1, h2])
    return hashlib.md5(f"{sorted_hashes[0]}|{sorted_hashes[1]}".encode()).hexdigest()[:32]


def llm_analyze_pair(proposal1_json: str, proposal2_json: str, use_cache: bool = True):
    """Analisis kemiripan dua proposal menggunakan Gemini LLM"""
    if not GEMINI_API_KEYS:
        return {"error": "Gemini API key not configured. Set GEMINI_API_KEY_1, GEMINI_API_KEY_2, etc in .env file"}
    
    try:
        proposal1 = json.loads(proposal1_json)
        proposal2 = json.loads(proposal2_json)
    except json.JSONDecodeError:
        return {"error": "Invalid JSON format for proposals"}
    
    # Generate pair hash untuk caching
    pair_hash = generate_pair_hash(proposal1, proposal2)
    
    # Check cache first
    if use_cache:
        cached_result = db_get_llm_analysis(pair_hash)
        if cached_result:
            print(f"πŸ“¦ Using cached LLM result: {pair_hash[:8]}...")
            return cached_result
    
    # Build prompt
    prompt = f"""Anda adalah penilai kemiripan proposal skripsi yang ahli dan berpengalaman. Analisis dua proposal berikut dengan KRITERIA AKADEMIK yang benar.



ATURAN PENILAIAN PENTING:

1. Proposal skripsi dianggap BERMASALAH hanya jika KETIGA aspek ini SAMA: Topik/Domain + Dataset/Objek Penelitian + Metode/Algoritma

2. Jika METODE BERBEDA (walaupun topik & dataset sama) β†’ AMAN, karena memberikan kontribusi ilmiah berbeda

3. Jika DATASET/OBJEK BERBEDA (walaupun topik & metode sama) β†’ AMAN, karena studi kasus berbeda

4. Jika TOPIK/DOMAIN BERBEDA β†’ AMAN

5. Penelitian replikasi dengan variasi adalah HAL YANG WAJAR dalam dunia akademik



PROPOSAL 1:

- NIM: {proposal1.get('nim', 'N/A')}

- Nama: {proposal1.get('nama', 'N/A')}

- Judul: {proposal1.get('judul', 'N/A')}

- Deskripsi: {proposal1.get('deskripsi', 'N/A')[:500] if proposal1.get('deskripsi') else 'N/A'}

- Problem Statement: {proposal1.get('problem', 'N/A')[:500] if proposal1.get('problem') else 'N/A'}

- Metode: {proposal1.get('metode', 'N/A')}



PROPOSAL 2:

- NIM: {proposal2.get('nim', 'N/A')}

- Nama: {proposal2.get('nama', 'N/A')}

- Judul: {proposal2.get('judul', 'N/A')}

- Deskripsi: {proposal2.get('deskripsi', 'N/A')[:500] if proposal2.get('deskripsi') else 'N/A'}

- Problem Statement: {proposal2.get('problem', 'N/A')[:500] if proposal2.get('problem') else 'N/A'}

- Metode: {proposal2.get('metode', 'N/A')}



ANALISIS dengan cermat, lalu berikan output JSON (HANYA JSON, tanpa markdown):

{{

    "similarity_score": <0-100, tinggi HANYA jika topik+dataset+metode SEMUA sama>,

    "verdict": "<BERMASALAH jika score>=80, PERLU_REVIEW jika 50-79, AMAN jika <50>",

    "similar_aspects": {{

        "topik": <true/false - apakah tema/domain penelitian sama>,

        "dataset": <true/false - apakah objek/data penelitian sama>,

        "metode": <true/false - apakah algoritma/metode sama>,

        "pendekatan": <true/false - apakah framework/pendekatan sama>

    }},

    "differentiator": "<aspek pembeda utama: metode/dataset/domain/tidak_ada>",

    "reasoning": "<analisis mendalam 4-5 kalimat: jelaskan persamaan dan perbedaan dari aspek topik, dataset, dan metode. Jelaskan mengapa proposal ini aman/bermasalah berdasarkan kriteria akademik>",

    "saran": "<nasihat konstruktif 2-3 kalimat untuk mahasiswa: jika aman, beri saran penguatan diferensiasi. Jika bermasalah, beri warning dan alternatif arah penelitian>"

}}"""

    # Call Gemini API with retry/rotation
    response, error = call_gemini_with_retry(prompt)
    
    if error:
        return {"error": f"Gemini API error: {error}"}
    
    try:
        # Parse response
        response_text = response.text.strip()
        
        # Clean response (remove markdown code blocks if present)
        if response_text.startswith("```"):
            lines = response_text.split("\n")
            response_text = "\n".join(lines[1:-1])  # Remove first and last lines
        
        result = json.loads(response_text)
        result["pair_hash"] = pair_hash
        result["model_used"] = GEMINI_MODEL
        result["api_key_used"] = current_key_index + 1
        result["from_cache"] = False
        
        # Save to cache
        db_save_llm_analysis(
            pair_hash=pair_hash,
            proposal1_judul=proposal1.get('judul', ''),
            proposal2_judul=proposal2.get('judul', ''),
            result=result
        )
        
        return result
        
    except json.JSONDecodeError as e:
        return {
            "error": "Failed to parse LLM response as JSON",
            "raw_response": response_text if 'response_text' in dir() else "No response",
            "parse_error": str(e)
        }


def llm_check_status():
    """Check Gemini API status"""
    if not GENAI_AVAILABLE:
        return {
            "configured": False,
            "error": "google-genai package not available"
        }
    if not GEMINI_API_KEYS:
        return {
            "configured": False,
            "error": "No GEMINI_API_KEY found in environment"
        }
    
    response, error = call_gemini_with_retry("Respond with only: OK")
    
    if error:
        return {
            "configured": True,
            "total_keys": len(GEMINI_API_KEYS),
            "model": GEMINI_MODEL,
            "status": "error",
            "error": error
        }
    
    return {
        "configured": True,
        "total_keys": len(GEMINI_API_KEYS),
        "current_key": current_key_index + 1,
        "model": GEMINI_MODEL,
        "status": "connected",
        "test_response": response.text.strip()[:50]
    }


def llm_analyze_simple(judul1: str, judul2: str, metode1: str, metode2: str):
    """Simplified analysis - hanya judul dan metode (untuk testing cepat)"""
    if not GEMINI_API_KEYS:
        return {"error": "Gemini API key not configured"}
    
    prompt = f"""Anda adalah penilai kemiripan proposal skripsi yang ahli. Bandingkan dua proposal berikut dengan KRITERIA AKADEMIK yang benar.



ATURAN PENILAIAN PENTING:

1. Proposal skripsi dianggap BERMASALAH hanya jika KETIGA aspek ini SAMA: Topik/Domain + Dataset + Metode

2. Jika METODE BERBEDA (walaupun topik sama) β†’ AMAN, karena kontribusi berbeda

3. Jika DATASET BERBEDA (walaupun topik & metode sama) β†’ AMAN, karena studi kasus berbeda

4. Jika TOPIK/DOMAIN BERBEDA β†’ AMAN



Proposal 1:

- Judul: {judul1}

- Metode: {metode1}



Proposal 2:

- Judul: {judul2}

- Metode: {metode2}



ANALISIS dengan cermat, lalu berikan output JSON (HANYA JSON, tanpa markdown):

{{

    "similarity_score": <0-100, tinggi HANYA jika topik+dataset+metode SEMUA sama>,

    "verdict": "<BERMASALAH jika score>=80, PERLU_REVIEW jika 50-79, AMAN jika <50>",

    "topik_sama": <true/false>,

    "metode_sama": <true/false>,

    "differentiator": "<aspek pembeda utama: metode/dataset/domain/tidak_ada>",

    "reasoning": "<analisis mendalam 3-4 kalimat: jelaskan persamaan, perbedaan, dan mengapa aman/bermasalah>",

    "saran": "<nasihat konstruktif untuk mahasiswa, misal: cara memperkuat diferensiasi, atau warning jika terlalu mirip>"

}}"""

    response, error = call_gemini_with_retry(prompt)
    
    if error:
        return {"error": error}
    
    try:
        response_text = response.text.strip()
        
        if response_text.startswith("```"):
            lines = response_text.split("\n")
            response_text = "\n".join(lines[1:-1])
        
        result = json.loads(response_text)
        result["model_used"] = GEMINI_MODEL
        result["api_key_used"] = current_key_index + 1
        return result
        
    except json.JSONDecodeError as e:
        return {"error": f"Failed to parse response: {e}", "raw": response_text}


# Gradio Interface
with gr.Blocks(title="Semantic Embedding API") as demo:
    gr.Markdown("# πŸ”€ Semantic Embedding API")
    gr.Markdown("API untuk menghasilkan text embedding menggunakan `paraphrase-multilingual-MiniLM-L12-v2`")
    gr.Markdown("**Model**: Multilingual, mendukung 50+ bahasa termasuk Bahasa Indonesia")
    
    with gr.Tab("πŸ”’ Single Embedding"):
        gr.Markdown("Generate embedding vector untuk satu teks")
        text_input = gr.Textbox(
            label="Input Text", 
            placeholder="Masukkan teks untuk di-embed...",
            lines=2
        )
        single_output = gr.JSON(label="Embedding Result")
        single_btn = gr.Button("Generate Embedding", variant="primary")
        single_btn.click(fn=get_embedding, inputs=text_input, outputs=single_output, api_name="get_embedding")
    
    with gr.Tab("πŸ“¦ Batch Embedding"):
        gr.Markdown("Generate embeddings untuk multiple teks sekaligus")
        batch_input = gr.Textbox(
            label="JSON Array of Texts", 
            placeholder='["teks pertama", "teks kedua", "teks ketiga"]',
            lines=4
        )
        batch_output = gr.JSON(label="Embeddings Result")
        batch_btn = gr.Button("Generate Embeddings", variant="primary")
        batch_btn.click(fn=get_embeddings_batch, inputs=batch_input, outputs=batch_output, api_name="get_embeddings_batch")
    
    with gr.Tab("πŸ“Š Similarity Check"):
        gr.Markdown("Hitung kemiripan semantik antara dua teks")
        with gr.Row():
            sim_text1 = gr.Textbox(label="Text 1", placeholder="Teks pertama...", lines=2)
            sim_text2 = gr.Textbox(label="Text 2", placeholder="Teks kedua...", lines=2)
        sim_output = gr.JSON(label="Similarity Result")
        sim_btn = gr.Button("Calculate Similarity", variant="primary")
        sim_btn.click(fn=calculate_similarity, inputs=[sim_text1, sim_text2], outputs=sim_output, api_name="calculate_similarity")
    
    with gr.Tab("πŸ’Ύ Database (Supabase)"):
        gr.Markdown("### Supabase Cache Operations")
        gr.Markdown("Proxy untuk akses Supabase (API key aman di server)")
        gr.Markdown("*Note: Operasi write (save) hanya tersedia melalui API untuk keamanan.*")
        
        with gr.Row():
            db_check_btn = gr.Button("πŸ”Œ Check Connection", variant="secondary")
            db_check_output = gr.JSON(label="Connection Status")
            db_check_btn.click(fn=db_check_connection, outputs=db_check_output, api_name="db_check_connection")
        
        gr.Markdown("---")
        
        gr.Markdown("#### Get All Cached Embeddings")
        db_all_btn = gr.Button("πŸ“₯ Get All Embeddings", variant="primary")
        db_all_output = gr.JSON(label="All Embeddings")
        db_all_btn.click(fn=db_get_all_embeddings, outputs=db_all_output, api_name="db_get_all_embeddings")
        
        gr.Markdown("---")
        
        gr.Markdown("#### Get Single Embedding by NIM")
        with gr.Row():
            db_nim_input = gr.Textbox(label="NIM", placeholder="10121xxx")
            db_hash_input = gr.Textbox(label="Content Hash", placeholder="abc123...")
        db_get_btn = gr.Button("πŸ” Get Embedding", variant="primary")
        db_get_output = gr.JSON(label="Embedding Result")
        db_get_btn.click(fn=db_get_embedding, inputs=[db_nim_input, db_hash_input], outputs=db_get_output, api_name="db_get_embedding")
    
    with gr.Tab("πŸ€– LLM Analysis (Gemini)"):
        gr.Markdown("### Analisis Kemiripan dengan LLM")
        gr.Markdown("Menggunakan Google Gemini untuk analisis mendalam dengan penjelasan")
        
        with gr.Row():
            llm_check_btn = gr.Button("πŸ”Œ Check Gemini Status", variant="secondary")
            llm_check_output = gr.JSON(label="Gemini Status")
            llm_check_btn.click(fn=llm_check_status, outputs=llm_check_output, api_name="llm_check_status")
        
        gr.Markdown("---")
        
        gr.Markdown("#### Quick Analysis (Judul + Metode saja)")
        with gr.Row():
            with gr.Column():
                llm_judul1 = gr.Textbox(label="Judul Proposal 1", placeholder="Analisis Sentimen dengan SVM...", lines=2)
                llm_metode1 = gr.Textbox(label="Metode 1", placeholder="Support Vector Machine")
            with gr.Column():
                llm_judul2 = gr.Textbox(label="Judul Proposal 2", placeholder="Klasifikasi Sentimen dengan SVM...", lines=2)
                llm_metode2 = gr.Textbox(label="Metode 2", placeholder="Support Vector Machine")
        
        llm_simple_btn = gr.Button("πŸš€ Analyze (Quick)", variant="primary")
        llm_simple_output = gr.JSON(label="Quick Analysis Result")
        llm_simple_btn.click(
            fn=llm_analyze_simple, 
            inputs=[llm_judul1, llm_judul2, llm_metode1, llm_metode2], 
            outputs=llm_simple_output,
            api_name="llm_analyze_simple"
        )
        
        gr.Markdown("---")
        
        gr.Markdown("#### Full Analysis (Complete Proposal Data)")
        gr.Markdown("*Hasil di-cache ke Supabase. Request yang sama akan menggunakan cache.*")
        with gr.Row():
            llm_proposal1 = gr.Textbox(
                label="Proposal 1 (JSON)", 
                placeholder='{"nim": "123", "nama": "Ahmad", "judul": "...", "deskripsi": "...", "problem": "...", "metode": "..."}',
                lines=5
            )
            llm_proposal2 = gr.Textbox(
                label="Proposal 2 (JSON)", 
                placeholder='{"nim": "456", "nama": "Budi", "judul": "...", "deskripsi": "...", "problem": "...", "metode": "..."}',
                lines=5
            )
        
        with gr.Row():
            llm_use_cache = gr.Checkbox(label="Gunakan Cache", value=True, info="Uncheck untuk force refresh dari Gemini")
            llm_full_btn = gr.Button("πŸ” Analyze (Full)", variant="primary")
        
        llm_full_output = gr.JSON(label="Full Analysis Result")
        llm_full_btn.click(
            fn=llm_analyze_pair, 
            inputs=[llm_proposal1, llm_proposal2, llm_use_cache], 
            outputs=llm_full_output,
            api_name="llm_analyze_pair"
        )
        
        gr.Markdown("""

        **Output mencakup:**

        - `similarity_score`: Skor 0-100 (tinggi hanya jika topik+dataset+metode sama)

        - `verdict`: BERMASALAH / PERLU_REVIEW / AMAN

        - `reasoning`: Analisis mendalam dari AI

        - `similar_aspects`: Aspek yang mirip (topik/dataset/metode/pendekatan)

        - `differentiator`: Pembeda utama

        - `saran`: Nasihat untuk mahasiswa

        - `from_cache`: true jika hasil dari cache

        """)
    
    with gr.Accordion("πŸ“‘ API Usage (untuk Developer)", open=False):
        gr.Markdown("""

### Endpoints



#### Embedding

- `get_embedding` - Single text embedding

- `get_embeddings_batch` - Batch text embeddings  

- `calculate_similarity` - Compare two texts



#### Database (Supabase Proxy)

- `db_check_connection` - Test Supabase connection

- `db_get_all_embeddings` - Get all cached embeddings

- `db_get_embedding` - Get embedding by NIM + hash

- `db_save_embedding` - Save embedding to cache



### Example API Call

```javascript

// Get all cached embeddings

const response = await fetch("YOUR_SPACE_URL/gradio_api/call/db_get_all_embeddings", {

    method: "POST",

    headers: { "Content-Type": "application/json" },

    body: JSON.stringify({ data: [] })

});

const result = await response.json();

const eventId = result.event_id;



// Get result

const dataResponse = await fetch(`YOUR_SPACE_URL/gradio_api/call/db_get_all_embeddings/${eventId}`);

```

        """)
    
    gr.Markdown("---")
    gr.Markdown("*Dibuat untuk Monitoring Proposal Skripsi KK E - UNIKOM*")
    
    # Hidden API-only endpoints (tidak tampil di UI, tapi bisa diakses via API)
    with gr.Row(visible=False):
        api_save_input = gr.Textbox()
        api_save_output = gr.JSON()
        api_save_btn = gr.Button()
        api_save_btn.click(fn=db_save_embedding, inputs=api_save_input, outputs=api_save_output, api_name="db_save_embedding")

# Launch dengan API enabled
demo.launch()