Spaces:
Running
Running
File size: 30,814 Bytes
ae27454 3865f49 ae27454 3865f49 ae27454 3865f49 ae27454 3865f49 ae27454 3865f49 ae27454 3865f49 ae27454 3865f49 ae27454 3865f49 ae27454 3865f49 ae27454 3865f49 ae27454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 |
import gradio as gr
from sentence_transformers import SentenceTransformer
import json
import numpy as np
import os
import httpx
import hashlib
# Load environment variables from .env file (optional, for local development)
try:
from dotenv import load_dotenv
load_dotenv()
print("β
Loaded .env file")
except ImportError:
print("βΉοΈ python-dotenv not installed, using system environment variables")
# Google GenAI SDK (new library) - optional, graceful fallback if not available
try:
from google import genai
from google.genai import types
GENAI_AVAILABLE = True
print("β
google-genai loaded successfully")
except ImportError as e:
GENAI_AVAILABLE = False
print(f"β οΈ google-genai not available: {e}")
genai = None
types = None
# ==================== CONFIGURATION ====================
# Model - akan auto-download dari HF Hub saat pertama kali
HF_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
# Path lokal untuk development (opsional, diabaikan jika tidak ada)
LOCAL_MODEL_PATH = r"E:\huggingface_models\hub\models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2\snapshots"
# Supabase configuration (dari environment variables untuk keamanan)
# Di HF Space: Settings > Repository secrets
# Di lokal: set environment variable atau gunakan default untuk testing
SUPABASE_URL = os.environ.get("SUPABASE_URL", "")
SUPABASE_KEY = os.environ.get("SUPABASE_KEY", "")
# Gemini API configuration with key rotation
GEMINI_MODEL = os.environ.get("GEMINI_MODEL", "gemini-2.5-pro") # atau gemini-2.5-flash, gemini-2.5-flash-lite
# Load multiple API keys for rotation
GEMINI_API_KEYS = []
for i in range(1, 10): # Support up to 9 keys
key = os.environ.get(f"GEMINI_API_KEY_{i}", "")
if key:
GEMINI_API_KEYS.append(key)
# Fallback to single key if no numbered keys found
if not GEMINI_API_KEYS:
single_key = os.environ.get("GEMINI_API_KEY", "")
if single_key:
GEMINI_API_KEYS.append(single_key)
# Track current key index for rotation
current_key_index = 0
def get_gemini_client():
"""Get Gemini client with current API key"""
global current_key_index
if not GENAI_AVAILABLE or genai is None:
return None
if not GEMINI_API_KEYS:
return None
return genai.Client(api_key=GEMINI_API_KEYS[current_key_index])
def rotate_api_key():
"""Rotate to next API key"""
global current_key_index
if len(GEMINI_API_KEYS) > 1:
current_key_index = (current_key_index + 1) % len(GEMINI_API_KEYS)
print(f"π Rotated to API key #{current_key_index + 1}")
return current_key_index
def call_gemini_with_retry(prompt: str, max_retries: int = None):
"""Call Gemini API with automatic key rotation on rate limit"""
global current_key_index
if not GEMINI_API_KEYS:
return None, "No API keys configured"
if max_retries is None:
max_retries = len(GEMINI_API_KEYS)
last_error = None
for attempt in range(max_retries):
try:
client = get_gemini_client()
response = client.models.generate_content(
model=GEMINI_MODEL,
contents=prompt
)
return response, None
except Exception as e:
error_str = str(e).lower()
last_error = str(e)
# Check if rate limit error
if "429" in error_str or "rate" in error_str or "quota" in error_str or "resource" in error_str:
print(f"β οΈ Rate limit hit on key #{current_key_index + 1}: {e}")
rotate_api_key()
continue
else:
# Non-rate-limit error, don't retry
return None, str(e)
return None, f"All API keys exhausted. Last error: {last_error}"
# Initialize and print status
if GEMINI_API_KEYS:
print(f"β
Gemini configured with {len(GEMINI_API_KEYS)} API key(s)")
print(f" Model: {GEMINI_MODEL}")
else:
print("β οΈ No Gemini API keys found")
def get_model_path():
"""Deteksi environment dan return path model yang sesuai"""
# Cek apakah folder lokal ada
if os.path.exists(LOCAL_MODEL_PATH):
# Cari snapshot terbaru
snapshots = os.listdir(LOCAL_MODEL_PATH)
if snapshots:
return os.path.join(LOCAL_MODEL_PATH, snapshots[0])
# Fallback ke HF Hub (untuk deployment di Space)
return HF_MODEL_NAME
# Load model saat startup
print("Loading model...")
model = None
try:
model_path = get_model_path()
print(f"Using model from: {model_path}")
model = SentenceTransformer(model_path)
print("β
Model loaded successfully!")
except Exception as e:
print(f"β Failed to load model: {e}")
model = None
def get_embedding(text: str):
"""Generate embedding untuk single text"""
if model is None:
return {"error": "Model not loaded"}
if not text or not text.strip():
return {"error": "Text tidak boleh kosong"}
try:
embedding = model.encode(text.strip())
return {"embedding": embedding.tolist()}
except Exception as e:
return {"error": str(e)}
def get_embeddings_batch(texts_json: str):
"""Generate embeddings untuk multiple texts (JSON array)"""
try:
texts = json.loads(texts_json)
if not isinstance(texts, list):
return {"error": "Input harus JSON array"}
if len(texts) == 0:
return {"error": "Array tidak boleh kosong"}
# Filter empty strings
texts = [t.strip() for t in texts if t and t.strip()]
if len(texts) == 0:
return {"error": "Semua text kosong"}
embeddings = model.encode(texts)
return {"embeddings": embeddings.tolist()}
except json.JSONDecodeError:
return {"error": "Invalid JSON format. Gunakan format: [\"teks 1\", \"teks 2\"]"}
except Exception as e:
return {"error": str(e)}
def calculate_similarity(text1: str, text2: str):
"""Hitung cosine similarity antara dua teks"""
if not text1 or not text1.strip():
return {"error": "Text 1 tidak boleh kosong"}
if not text2 or not text2.strip():
return {"error": "Text 2 tidak boleh kosong"}
try:
embeddings = model.encode([text1.strip(), text2.strip()])
# Cosine similarity
similarity = np.dot(embeddings[0], embeddings[1]) / (
np.linalg.norm(embeddings[0]) * np.linalg.norm(embeddings[1])
)
return {
"similarity": float(similarity),
"percentage": f"{similarity * 100:.2f}%"
}
except Exception as e:
return {"error": str(e)}
# ==================== SUPABASE PROXY FUNCTIONS ====================
def get_supabase_headers():
"""Get headers untuk Supabase API calls"""
return {
"apikey": SUPABASE_KEY,
"Authorization": f"Bearer {SUPABASE_KEY}",
"Content-Type": "application/json",
"Prefer": "return=representation"
}
def db_get_all_embeddings():
"""Ambil semua embeddings dari Supabase"""
if not SUPABASE_URL or not SUPABASE_KEY:
return {"error": "Supabase not configured"}
try:
url = f"{SUPABASE_URL}/rest/v1/proposal_embeddings?select=nim,content_hash,embedding_combined,embedding_judul,embedding_deskripsi,embedding_problem,embedding_metode,nama,judul"
with httpx.Client(timeout=30.0) as client:
response = client.get(url, headers=get_supabase_headers())
if response.status_code == 200:
return {"data": response.json(), "count": len(response.json())}
else:
return {"error": f"Supabase error: {response.status_code}", "detail": response.text}
except Exception as e:
return {"error": str(e)}
def db_get_embedding(nim: str, content_hash: str):
"""Ambil embedding untuk NIM dan content_hash tertentu"""
if not SUPABASE_URL or not SUPABASE_KEY:
return {"error": "Supabase not configured"}
try:
url = f"{SUPABASE_URL}/rest/v1/proposal_embeddings?nim=eq.{nim}&content_hash=eq.{content_hash}&select=*"
with httpx.Client(timeout=30.0) as client:
response = client.get(url, headers=get_supabase_headers())
if response.status_code == 200:
data = response.json()
return {"data": data[0] if data else None, "found": len(data) > 0}
else:
return {"error": f"Supabase error: {response.status_code}"}
except Exception as e:
return {"error": str(e)}
def db_save_embedding(data_json: str):
"""Simpan embedding ke Supabase (upsert)"""
if not SUPABASE_URL or not SUPABASE_KEY:
return {"error": "Supabase not configured"}
try:
data = json.loads(data_json)
# Validate required fields
if not data.get("nim") or not data.get("content_hash"):
return {"error": "nim and content_hash are required"}
if not data.get("embedding_combined"):
return {"error": "embedding_combined is required"}
url = f"{SUPABASE_URL}/rest/v1/proposal_embeddings"
headers = get_supabase_headers()
headers["Prefer"] = "resolution=merge-duplicates,return=representation"
payload = {
"nim": data["nim"],
"content_hash": data["content_hash"],
"embedding_combined": data["embedding_combined"],
"embedding_judul": data.get("embedding_judul"),
"embedding_deskripsi": data.get("embedding_deskripsi"),
"embedding_problem": data.get("embedding_problem"),
"embedding_metode": data.get("embedding_metode"),
"nama": data.get("nama"),
"judul": data.get("judul")
}
with httpx.Client(timeout=30.0) as client:
response = client.post(url, headers=headers, json=payload)
if response.status_code in [200, 201]:
return {"success": True, "data": response.json()}
else:
return {"error": f"Supabase error: {response.status_code}", "detail": response.text}
except json.JSONDecodeError:
return {"error": "Invalid JSON format"}
except Exception as e:
return {"error": str(e)}
def db_check_connection():
"""Test koneksi ke Supabase"""
if not SUPABASE_URL or not SUPABASE_KEY:
return {"connected": False, "error": "Supabase URL or KEY not configured"}
try:
url = f"{SUPABASE_URL}/rest/v1/proposal_embeddings?select=id&limit=1"
with httpx.Client(timeout=10.0) as client:
response = client.get(url, headers=get_supabase_headers())
return {
"connected": response.status_code == 200,
"status_code": response.status_code,
"supabase_url": SUPABASE_URL[:30] + "..." if len(SUPABASE_URL) > 30 else SUPABASE_URL
}
except Exception as e:
return {"connected": False, "error": str(e)}
# ==================== LLM CACHE FUNCTIONS (SUPABASE) ====================
def db_get_llm_analysis(pair_hash: str):
"""Ambil cached LLM analysis dari Supabase by pair_hash"""
if not SUPABASE_URL or not SUPABASE_KEY:
return None
try:
url = f"{SUPABASE_URL}/rest/v1/llm_analysis?pair_hash=eq.{pair_hash}&select=*"
with httpx.Client(timeout=10.0) as client:
response = client.get(url, headers=get_supabase_headers())
if response.status_code == 200:
data = response.json()
if data and len(data) > 0:
result = data[0]
# Parse similar_aspects from JSONB
if isinstance(result.get('similar_aspects'), str):
result['similar_aspects'] = json.loads(result['similar_aspects'])
result['from_cache'] = True
return result
return None
except Exception as e:
print(f"Error getting cached LLM analysis: {e}")
return None
def db_save_llm_analysis(pair_hash: str, proposal1_judul: str, proposal2_judul: str, result: dict):
"""Simpan LLM analysis result ke Supabase"""
if not SUPABASE_URL or not SUPABASE_KEY:
return False
try:
url = f"{SUPABASE_URL}/rest/v1/llm_analysis"
headers = get_supabase_headers()
headers["Prefer"] = "resolution=merge-duplicates" # Upsert
payload = {
"pair_hash": pair_hash,
"proposal1_judul": proposal1_judul[:500] if proposal1_judul else "",
"proposal2_judul": proposal2_judul[:500] if proposal2_judul else "",
"similarity_score": result.get("similarity_score"),
"verdict": result.get("verdict"),
"reasoning": result.get("reasoning"),
"saran": result.get("saran"),
"similar_aspects": json.dumps(result.get("similar_aspects", {})),
"differentiator": result.get("differentiator"),
"model_used": result.get("model_used", GEMINI_MODEL)
}
with httpx.Client(timeout=10.0) as client:
response = client.post(url, headers=headers, json=payload)
if response.status_code in [200, 201]:
print(f"β
LLM result cached: {pair_hash[:8]}...")
return True
else:
print(f"β οΈ Failed to cache LLM result: {response.status_code}")
return False
except Exception as e:
print(f"Error saving LLM analysis: {e}")
return False
# ==================== LLM FUNCTIONS (GEMINI) ====================
def generate_pair_hash(proposal1: dict, proposal2: dict) -> str:
"""Generate unique hash untuk pasangan proposal"""
def proposal_hash(p):
content = f"{p.get('nim', '')}|{p.get('judul', '')}|{p.get('deskripsi', '')}|{p.get('problem', '')}|{p.get('metode', '')}"
return hashlib.md5(content.encode()).hexdigest()[:16]
h1 = proposal_hash(proposal1)
h2 = proposal_hash(proposal2)
# Sort untuk konsistensi (A,B = B,A)
sorted_hashes = sorted([h1, h2])
return hashlib.md5(f"{sorted_hashes[0]}|{sorted_hashes[1]}".encode()).hexdigest()[:32]
def llm_analyze_pair(proposal1_json: str, proposal2_json: str, use_cache: bool = True):
"""Analisis kemiripan dua proposal menggunakan Gemini LLM"""
if not GEMINI_API_KEYS:
return {"error": "Gemini API key not configured. Set GEMINI_API_KEY_1, GEMINI_API_KEY_2, etc in .env file"}
try:
proposal1 = json.loads(proposal1_json)
proposal2 = json.loads(proposal2_json)
except json.JSONDecodeError:
return {"error": "Invalid JSON format for proposals"}
# Generate pair hash untuk caching
pair_hash = generate_pair_hash(proposal1, proposal2)
# Check cache first
if use_cache:
cached_result = db_get_llm_analysis(pair_hash)
if cached_result:
print(f"π¦ Using cached LLM result: {pair_hash[:8]}...")
return cached_result
# Build prompt
prompt = f"""Anda adalah penilai kemiripan proposal skripsi yang ahli dan berpengalaman. Analisis dua proposal berikut dengan KRITERIA AKADEMIK yang benar.
ATURAN PENILAIAN PENTING:
1. Proposal skripsi dianggap BERMASALAH hanya jika KETIGA aspek ini SAMA: Topik/Domain + Dataset/Objek Penelitian + Metode/Algoritma
2. Jika METODE BERBEDA (walaupun topik & dataset sama) β AMAN, karena memberikan kontribusi ilmiah berbeda
3. Jika DATASET/OBJEK BERBEDA (walaupun topik & metode sama) β AMAN, karena studi kasus berbeda
4. Jika TOPIK/DOMAIN BERBEDA β AMAN
5. Penelitian replikasi dengan variasi adalah HAL YANG WAJAR dalam dunia akademik
PROPOSAL 1:
- NIM: {proposal1.get('nim', 'N/A')}
- Nama: {proposal1.get('nama', 'N/A')}
- Judul: {proposal1.get('judul', 'N/A')}
- Deskripsi: {proposal1.get('deskripsi', 'N/A')[:500] if proposal1.get('deskripsi') else 'N/A'}
- Problem Statement: {proposal1.get('problem', 'N/A')[:500] if proposal1.get('problem') else 'N/A'}
- Metode: {proposal1.get('metode', 'N/A')}
PROPOSAL 2:
- NIM: {proposal2.get('nim', 'N/A')}
- Nama: {proposal2.get('nama', 'N/A')}
- Judul: {proposal2.get('judul', 'N/A')}
- Deskripsi: {proposal2.get('deskripsi', 'N/A')[:500] if proposal2.get('deskripsi') else 'N/A'}
- Problem Statement: {proposal2.get('problem', 'N/A')[:500] if proposal2.get('problem') else 'N/A'}
- Metode: {proposal2.get('metode', 'N/A')}
ANALISIS dengan cermat, lalu berikan output JSON (HANYA JSON, tanpa markdown):
{{
"similarity_score": <0-100, tinggi HANYA jika topik+dataset+metode SEMUA sama>,
"verdict": "<BERMASALAH jika score>=80, PERLU_REVIEW jika 50-79, AMAN jika <50>",
"similar_aspects": {{
"topik": <true/false - apakah tema/domain penelitian sama>,
"dataset": <true/false - apakah objek/data penelitian sama>,
"metode": <true/false - apakah algoritma/metode sama>,
"pendekatan": <true/false - apakah framework/pendekatan sama>
}},
"differentiator": "<aspek pembeda utama: metode/dataset/domain/tidak_ada>",
"reasoning": "<analisis mendalam 4-5 kalimat: jelaskan persamaan dan perbedaan dari aspek topik, dataset, dan metode. Jelaskan mengapa proposal ini aman/bermasalah berdasarkan kriteria akademik>",
"saran": "<nasihat konstruktif 2-3 kalimat untuk mahasiswa: jika aman, beri saran penguatan diferensiasi. Jika bermasalah, beri warning dan alternatif arah penelitian>"
}}"""
# Call Gemini API with retry/rotation
response, error = call_gemini_with_retry(prompt)
if error:
return {"error": f"Gemini API error: {error}"}
try:
# Parse response
response_text = response.text.strip()
# Clean response (remove markdown code blocks if present)
if response_text.startswith("```"):
lines = response_text.split("\n")
response_text = "\n".join(lines[1:-1]) # Remove first and last lines
result = json.loads(response_text)
result["pair_hash"] = pair_hash
result["model_used"] = GEMINI_MODEL
result["api_key_used"] = current_key_index + 1
result["from_cache"] = False
# Save to cache
db_save_llm_analysis(
pair_hash=pair_hash,
proposal1_judul=proposal1.get('judul', ''),
proposal2_judul=proposal2.get('judul', ''),
result=result
)
return result
except json.JSONDecodeError as e:
return {
"error": "Failed to parse LLM response as JSON",
"raw_response": response_text if 'response_text' in dir() else "No response",
"parse_error": str(e)
}
def llm_check_status():
"""Check Gemini API status"""
if not GENAI_AVAILABLE:
return {
"configured": False,
"error": "google-genai package not available"
}
if not GEMINI_API_KEYS:
return {
"configured": False,
"error": "No GEMINI_API_KEY found in environment"
}
response, error = call_gemini_with_retry("Respond with only: OK")
if error:
return {
"configured": True,
"total_keys": len(GEMINI_API_KEYS),
"model": GEMINI_MODEL,
"status": "error",
"error": error
}
return {
"configured": True,
"total_keys": len(GEMINI_API_KEYS),
"current_key": current_key_index + 1,
"model": GEMINI_MODEL,
"status": "connected",
"test_response": response.text.strip()[:50]
}
def llm_analyze_simple(judul1: str, judul2: str, metode1: str, metode2: str):
"""Simplified analysis - hanya judul dan metode (untuk testing cepat)"""
if not GEMINI_API_KEYS:
return {"error": "Gemini API key not configured"}
prompt = f"""Anda adalah penilai kemiripan proposal skripsi yang ahli. Bandingkan dua proposal berikut dengan KRITERIA AKADEMIK yang benar.
ATURAN PENILAIAN PENTING:
1. Proposal skripsi dianggap BERMASALAH hanya jika KETIGA aspek ini SAMA: Topik/Domain + Dataset + Metode
2. Jika METODE BERBEDA (walaupun topik sama) β AMAN, karena kontribusi berbeda
3. Jika DATASET BERBEDA (walaupun topik & metode sama) β AMAN, karena studi kasus berbeda
4. Jika TOPIK/DOMAIN BERBEDA β AMAN
Proposal 1:
- Judul: {judul1}
- Metode: {metode1}
Proposal 2:
- Judul: {judul2}
- Metode: {metode2}
ANALISIS dengan cermat, lalu berikan output JSON (HANYA JSON, tanpa markdown):
{{
"similarity_score": <0-100, tinggi HANYA jika topik+dataset+metode SEMUA sama>,
"verdict": "<BERMASALAH jika score>=80, PERLU_REVIEW jika 50-79, AMAN jika <50>",
"topik_sama": <true/false>,
"metode_sama": <true/false>,
"differentiator": "<aspek pembeda utama: metode/dataset/domain/tidak_ada>",
"reasoning": "<analisis mendalam 3-4 kalimat: jelaskan persamaan, perbedaan, dan mengapa aman/bermasalah>",
"saran": "<nasihat konstruktif untuk mahasiswa, misal: cara memperkuat diferensiasi, atau warning jika terlalu mirip>"
}}"""
response, error = call_gemini_with_retry(prompt)
if error:
return {"error": error}
try:
response_text = response.text.strip()
if response_text.startswith("```"):
lines = response_text.split("\n")
response_text = "\n".join(lines[1:-1])
result = json.loads(response_text)
result["model_used"] = GEMINI_MODEL
result["api_key_used"] = current_key_index + 1
return result
except json.JSONDecodeError as e:
return {"error": f"Failed to parse response: {e}", "raw": response_text}
# Gradio Interface
with gr.Blocks(title="Semantic Embedding API") as demo:
gr.Markdown("# π€ Semantic Embedding API")
gr.Markdown("API untuk menghasilkan text embedding menggunakan `paraphrase-multilingual-MiniLM-L12-v2`")
gr.Markdown("**Model**: Multilingual, mendukung 50+ bahasa termasuk Bahasa Indonesia")
with gr.Tab("π’ Single Embedding"):
gr.Markdown("Generate embedding vector untuk satu teks")
text_input = gr.Textbox(
label="Input Text",
placeholder="Masukkan teks untuk di-embed...",
lines=2
)
single_output = gr.JSON(label="Embedding Result")
single_btn = gr.Button("Generate Embedding", variant="primary")
single_btn.click(fn=get_embedding, inputs=text_input, outputs=single_output, api_name="get_embedding")
with gr.Tab("π¦ Batch Embedding"):
gr.Markdown("Generate embeddings untuk multiple teks sekaligus")
batch_input = gr.Textbox(
label="JSON Array of Texts",
placeholder='["teks pertama", "teks kedua", "teks ketiga"]',
lines=4
)
batch_output = gr.JSON(label="Embeddings Result")
batch_btn = gr.Button("Generate Embeddings", variant="primary")
batch_btn.click(fn=get_embeddings_batch, inputs=batch_input, outputs=batch_output, api_name="get_embeddings_batch")
with gr.Tab("π Similarity Check"):
gr.Markdown("Hitung kemiripan semantik antara dua teks")
with gr.Row():
sim_text1 = gr.Textbox(label="Text 1", placeholder="Teks pertama...", lines=2)
sim_text2 = gr.Textbox(label="Text 2", placeholder="Teks kedua...", lines=2)
sim_output = gr.JSON(label="Similarity Result")
sim_btn = gr.Button("Calculate Similarity", variant="primary")
sim_btn.click(fn=calculate_similarity, inputs=[sim_text1, sim_text2], outputs=sim_output, api_name="calculate_similarity")
with gr.Tab("πΎ Database (Supabase)"):
gr.Markdown("### Supabase Cache Operations")
gr.Markdown("Proxy untuk akses Supabase (API key aman di server)")
gr.Markdown("*Note: Operasi write (save) hanya tersedia melalui API untuk keamanan.*")
with gr.Row():
db_check_btn = gr.Button("π Check Connection", variant="secondary")
db_check_output = gr.JSON(label="Connection Status")
db_check_btn.click(fn=db_check_connection, outputs=db_check_output, api_name="db_check_connection")
gr.Markdown("---")
gr.Markdown("#### Get All Cached Embeddings")
db_all_btn = gr.Button("π₯ Get All Embeddings", variant="primary")
db_all_output = gr.JSON(label="All Embeddings")
db_all_btn.click(fn=db_get_all_embeddings, outputs=db_all_output, api_name="db_get_all_embeddings")
gr.Markdown("---")
gr.Markdown("#### Get Single Embedding by NIM")
with gr.Row():
db_nim_input = gr.Textbox(label="NIM", placeholder="10121xxx")
db_hash_input = gr.Textbox(label="Content Hash", placeholder="abc123...")
db_get_btn = gr.Button("π Get Embedding", variant="primary")
db_get_output = gr.JSON(label="Embedding Result")
db_get_btn.click(fn=db_get_embedding, inputs=[db_nim_input, db_hash_input], outputs=db_get_output, api_name="db_get_embedding")
with gr.Tab("π€ LLM Analysis (Gemini)"):
gr.Markdown("### Analisis Kemiripan dengan LLM")
gr.Markdown("Menggunakan Google Gemini untuk analisis mendalam dengan penjelasan")
with gr.Row():
llm_check_btn = gr.Button("π Check Gemini Status", variant="secondary")
llm_check_output = gr.JSON(label="Gemini Status")
llm_check_btn.click(fn=llm_check_status, outputs=llm_check_output, api_name="llm_check_status")
gr.Markdown("---")
gr.Markdown("#### Quick Analysis (Judul + Metode saja)")
with gr.Row():
with gr.Column():
llm_judul1 = gr.Textbox(label="Judul Proposal 1", placeholder="Analisis Sentimen dengan SVM...", lines=2)
llm_metode1 = gr.Textbox(label="Metode 1", placeholder="Support Vector Machine")
with gr.Column():
llm_judul2 = gr.Textbox(label="Judul Proposal 2", placeholder="Klasifikasi Sentimen dengan SVM...", lines=2)
llm_metode2 = gr.Textbox(label="Metode 2", placeholder="Support Vector Machine")
llm_simple_btn = gr.Button("π Analyze (Quick)", variant="primary")
llm_simple_output = gr.JSON(label="Quick Analysis Result")
llm_simple_btn.click(
fn=llm_analyze_simple,
inputs=[llm_judul1, llm_judul2, llm_metode1, llm_metode2],
outputs=llm_simple_output,
api_name="llm_analyze_simple"
)
gr.Markdown("---")
gr.Markdown("#### Full Analysis (Complete Proposal Data)")
gr.Markdown("*Hasil di-cache ke Supabase. Request yang sama akan menggunakan cache.*")
with gr.Row():
llm_proposal1 = gr.Textbox(
label="Proposal 1 (JSON)",
placeholder='{"nim": "123", "nama": "Ahmad", "judul": "...", "deskripsi": "...", "problem": "...", "metode": "..."}',
lines=5
)
llm_proposal2 = gr.Textbox(
label="Proposal 2 (JSON)",
placeholder='{"nim": "456", "nama": "Budi", "judul": "...", "deskripsi": "...", "problem": "...", "metode": "..."}',
lines=5
)
with gr.Row():
llm_use_cache = gr.Checkbox(label="Gunakan Cache", value=True, info="Uncheck untuk force refresh dari Gemini")
llm_full_btn = gr.Button("π Analyze (Full)", variant="primary")
llm_full_output = gr.JSON(label="Full Analysis Result")
llm_full_btn.click(
fn=llm_analyze_pair,
inputs=[llm_proposal1, llm_proposal2, llm_use_cache],
outputs=llm_full_output,
api_name="llm_analyze_pair"
)
gr.Markdown("""
**Output mencakup:**
- `similarity_score`: Skor 0-100 (tinggi hanya jika topik+dataset+metode sama)
- `verdict`: BERMASALAH / PERLU_REVIEW / AMAN
- `reasoning`: Analisis mendalam dari AI
- `similar_aspects`: Aspek yang mirip (topik/dataset/metode/pendekatan)
- `differentiator`: Pembeda utama
- `saran`: Nasihat untuk mahasiswa
- `from_cache`: true jika hasil dari cache
""")
with gr.Accordion("π‘ API Usage (untuk Developer)", open=False):
gr.Markdown("""
### Endpoints
#### Embedding
- `get_embedding` - Single text embedding
- `get_embeddings_batch` - Batch text embeddings
- `calculate_similarity` - Compare two texts
#### Database (Supabase Proxy)
- `db_check_connection` - Test Supabase connection
- `db_get_all_embeddings` - Get all cached embeddings
- `db_get_embedding` - Get embedding by NIM + hash
- `db_save_embedding` - Save embedding to cache
### Example API Call
```javascript
// Get all cached embeddings
const response = await fetch("YOUR_SPACE_URL/gradio_api/call/db_get_all_embeddings", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ data: [] })
});
const result = await response.json();
const eventId = result.event_id;
// Get result
const dataResponse = await fetch(`YOUR_SPACE_URL/gradio_api/call/db_get_all_embeddings/${eventId}`);
```
""")
gr.Markdown("---")
gr.Markdown("*Dibuat untuk Monitoring Proposal Skripsi KK E - UNIKOM*")
# Hidden API-only endpoints (tidak tampil di UI, tapi bisa diakses via API)
with gr.Row(visible=False):
api_save_input = gr.Textbox()
api_save_output = gr.JSON()
api_save_btn = gr.Button()
api_save_btn.click(fn=db_save_embedding, inputs=api_save_input, outputs=api_save_output, api_name="db_save_embedding")
# Launch dengan API enabled
demo.launch()
|