Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,8 +9,8 @@ import random
|
|
| 9 |
from gretel_client import Gretel
|
| 10 |
from gretel_client.config import GretelClientConfigurationError
|
| 11 |
|
| 12 |
-
# Directory for saving processed
|
| 13 |
-
output_dir = '
|
| 14 |
os.makedirs(output_dir, exist_ok=True)
|
| 15 |
|
| 16 |
# Function to download and convert a PDF to text
|
|
@@ -22,6 +22,16 @@ def pdf_to_text(pdf_path):
|
|
| 22 |
text += page.get_text()
|
| 23 |
return text
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# Function to split text into chunks
|
| 26 |
def split_text_into_chunks(text, chunk_size=25, chunk_overlap=5, min_chunk_chars=50):
|
| 27 |
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|
@@ -38,76 +48,82 @@ def save_chunks(file_id, chunks, output_dir):
|
|
| 38 |
|
| 39 |
# Function to read chunks from files
|
| 40 |
def read_chunks_from_files(output_dir):
|
| 41 |
-
|
| 42 |
for filename in os.listdir(output_dir):
|
| 43 |
if filename.endswith('.md') and 'chunk' in filename:
|
| 44 |
file_id = filename.split('_chunk_')[0]
|
| 45 |
chunk_path = os.path.join(output_dir, filename)
|
| 46 |
with open(chunk_path, 'r') as file:
|
| 47 |
chunk = file.read()
|
| 48 |
-
if file_id not in
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
return
|
| 52 |
|
| 53 |
-
def
|
| 54 |
-
|
| 55 |
if use_example:
|
| 56 |
example_file_url = "https://gretel-datasets.s3.us-west-2.amazonaws.com/rag/GDPR_2016.pdf"
|
| 57 |
-
|
| 58 |
-
if not os.path.exists(
|
| 59 |
response = requests.get(example_file_url)
|
| 60 |
-
with open(
|
| 61 |
file.write(response.content)
|
| 62 |
-
|
| 63 |
elif uploaded_files is not None:
|
| 64 |
for uploaded_file in uploaded_files:
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
| 67 |
else:
|
| 68 |
-
chunk_text = "No
|
| 69 |
return None, 0, chunk_text, None
|
| 70 |
|
| 71 |
-
|
| 72 |
-
for
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
markdown_text = markdownify.markdownify(text)
|
| 75 |
-
file_id = os.path.splitext(os.path.basename(
|
| 76 |
markdown_path = os.path.join(output_dir, f"{file_id}.md")
|
| 77 |
with open(markdown_path, 'w') as file:
|
| 78 |
file.write(markdown_text)
|
| 79 |
chunks = split_text_into_chunks(markdown_text, chunk_size=chunk_size, chunk_overlap=chunk_overlap, min_chunk_chars=min_chunk_chars)
|
| 80 |
save_chunks(file_id, chunks, output_dir)
|
| 81 |
-
|
| 82 |
|
| 83 |
-
|
| 84 |
-
chunks = pdf_chunks_dict.get(file_id, [])
|
| 85 |
|
| 86 |
current_chunk += direction
|
| 87 |
if current_chunk < 0:
|
| 88 |
current_chunk = 0
|
| 89 |
-
elif current_chunk >= len(
|
| 90 |
-
current_chunk = len(
|
| 91 |
|
| 92 |
-
chunk_text =
|
| 93 |
-
|
| 94 |
-
return
|
| 95 |
|
| 96 |
-
def show_chunks(
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
current_chunk
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
chunk_text = chunks[current_chunk] if chunks else "No chunks available."
|
| 108 |
-
return chunk_text, current_chunk
|
| 109 |
-
else:
|
| 110 |
-
return "No PDF processed.", 0
|
| 111 |
|
| 112 |
# Validate API key and return button state
|
| 113 |
def check_api_key(api_key):
|
|
@@ -120,7 +136,7 @@ def check_api_key(api_key):
|
|
| 120 |
status_message = "Invalid"
|
| 121 |
return gr.update(interactive=is_valid), status_message
|
| 122 |
|
| 123 |
-
def generate_synthetic_records(api_key,
|
| 124 |
|
| 125 |
gretel = Gretel(api_key=api_key, validate=True, clear=True)
|
| 126 |
|
|
@@ -146,10 +162,30 @@ def generate_synthetic_records(api_key, pdf_chunks_dict, num_records):
|
|
| 146 |
"top_k": 40
|
| 147 |
}
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
df_in = pd.DataFrame()
|
| 150 |
try:
|
| 151 |
-
documents = list(
|
| 152 |
-
all_chunks = [(doc, chunk) for doc in documents for chunk in
|
| 153 |
|
| 154 |
for _ in range(num_records):
|
| 155 |
doc, chunk = random.choice(all_chunks)
|
|
@@ -158,7 +194,13 @@ def generate_synthetic_records(api_key, pdf_chunks_dict, num_records):
|
|
| 158 |
|
| 159 |
df = navigator.edit(PROMPT, seed_data=df_in, **GENERATE_PARAMS)
|
| 160 |
df = df.drop(columns=['text'])
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
csv_file = os.path.join(output_dir, "synthetic_qa.csv")
|
| 163 |
df.to_csv(csv_file, index=False)
|
| 164 |
|
|
@@ -173,7 +215,7 @@ def download_dataframe(df):
|
|
| 173 |
return csv_file
|
| 174 |
|
| 175 |
# CSS styling to center the logo and prevent right-click download
|
| 176 |
-
|
| 177 |
<style>
|
| 178 |
#logo-container {
|
| 179 |
display: flex;
|
|
@@ -188,7 +230,7 @@ css = """
|
|
| 188 |
|
| 189 |
# HTML content to include the logo
|
| 190 |
html_content = f"""
|
| 191 |
-
{
|
| 192 |
<div id="logo-container">
|
| 193 |
<svg width="181" height="72" viewBox="0 0 181 72" fill="none" xmlns="http://www.w3.org/2000/svg">
|
| 194 |
<g clip-path="url(#clip0_849_78)">
|
|
@@ -210,37 +252,40 @@ html_content = f"""
|
|
| 210 |
</div>
|
| 211 |
"""
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
# Gradio interface
|
| 214 |
-
with gr.Blocks() as demo:
|
| 215 |
with gr.Row():
|
| 216 |
with gr.Column(scale=3):
|
| 217 |
-
# gr.Markdown("# Upload PDFs")
|
| 218 |
-
# gr.Image("gretel_logo.svg", elem_id="logo", show_label=False)
|
| 219 |
gr.HTML(html_content)
|
| 220 |
|
| 221 |
-
with gr.Tab("Upload
|
| 222 |
use_example = gr.Checkbox(label="Continue with Example PDF", value=False, interactive=True)
|
| 223 |
-
uploaded_files = gr.File(label="Upload your PDF
|
| 224 |
-
# if uploaded_files:
|
| 225 |
-
# use_example = gr.Checkbox(label="Continue with Example PDF", value=False, interactive=False)
|
| 226 |
|
| 227 |
chunk_size = gr.Slider(label="Chunk Size (tokens)", minimum=10, maximum=1500, step=10, value=500)
|
| 228 |
chunk_overlap = gr.Slider(label="Chunk Overlap (tokens)", minimum=0, maximum=500, step=5, value=100)
|
| 229 |
min_chunk_chars = gr.Slider(label="Minimum Chunk Characters", minimum=10, maximum=2500, step=10, value=750)
|
| 230 |
|
| 231 |
-
process_button = gr.Button("Process
|
| 232 |
|
| 233 |
-
|
| 234 |
-
|
| 235 |
current_chunk = gr.State(value=0)
|
| 236 |
|
| 237 |
chunk_text = gr.Textbox(label="Chunk Text", lines=10)
|
| 238 |
|
| 239 |
def toggle_use_example(file_list):
|
| 240 |
return gr.update(
|
| 241 |
-
value
|
| 242 |
interactive=file_list is None or len(file_list) == 0
|
| 243 |
-
|
| 244 |
|
| 245 |
uploaded_files.change(
|
| 246 |
toggle_use_example,
|
|
@@ -249,9 +294,9 @@ with gr.Blocks() as demo:
|
|
| 249 |
)
|
| 250 |
|
| 251 |
process_button.click(
|
| 252 |
-
|
| 253 |
inputs=[uploaded_files, use_example, chunk_size, chunk_overlap, min_chunk_chars, current_chunk, gr.State(0)],
|
| 254 |
-
outputs=[
|
| 255 |
)
|
| 256 |
|
| 257 |
with gr.Row():
|
|
@@ -260,13 +305,13 @@ with gr.Blocks() as demo:
|
|
| 260 |
|
| 261 |
prev_button.click(
|
| 262 |
show_chunks,
|
| 263 |
-
inputs=[
|
| 264 |
outputs=[chunk_text, current_chunk]
|
| 265 |
)
|
| 266 |
|
| 267 |
next_button.click(
|
| 268 |
show_chunks,
|
| 269 |
-
inputs=[
|
| 270 |
outputs=[chunk_text, current_chunk]
|
| 271 |
)
|
| 272 |
|
|
@@ -277,28 +322,26 @@ with gr.Blocks() as demo:
|
|
| 277 |
api_key_input = gr.Textbox(label="Gretel API Key (available at https://console.gretel.ai)", type="password", placeholder="Enter your API key", scale=2)
|
| 278 |
validate_status = gr.Textbox(label="Validation Status", interactive=False, scale=1)
|
| 279 |
|
| 280 |
-
# User-specific settings
|
| 281 |
num_records = gr.Number(label="Number of Records", value=10)
|
| 282 |
|
| 283 |
generate_button = gr.Button("Generate Synthetic Records", interactive=False)
|
| 284 |
download_link = gr.File(label="Download Link", visible=False)
|
| 285 |
|
| 286 |
-
# Validate API key on input change and update button interactivity
|
| 287 |
api_key_input.change(
|
| 288 |
fn=check_api_key,
|
| 289 |
inputs=[api_key_input],
|
| 290 |
outputs=[generate_button, validate_status]
|
| 291 |
)
|
| 292 |
|
| 293 |
-
output_df = gr.Dataframe(headers=["
|
| 294 |
|
| 295 |
-
def generate_and_prepare_download(api_key,
|
| 296 |
-
df, csv_file = generate_synthetic_records(api_key,
|
| 297 |
return df, gr.update(value=csv_file, visible=df['value']!=None)
|
| 298 |
|
| 299 |
generate_button.click(
|
| 300 |
fn=generate_and_prepare_download,
|
| 301 |
-
inputs=[api_key_input,
|
| 302 |
outputs=[output_df, download_link]
|
| 303 |
)
|
| 304 |
|
|
|
|
| 9 |
from gretel_client import Gretel
|
| 10 |
from gretel_client.config import GretelClientConfigurationError
|
| 11 |
|
| 12 |
+
# Directory for saving processed files
|
| 13 |
+
output_dir = 'processed_files'
|
| 14 |
os.makedirs(output_dir, exist_ok=True)
|
| 15 |
|
| 16 |
# Function to download and convert a PDF to text
|
|
|
|
| 22 |
text += page.get_text()
|
| 23 |
return text
|
| 24 |
|
| 25 |
+
# Function to read a TXT file
|
| 26 |
+
def txt_to_text(txt_path):
|
| 27 |
+
with open(txt_path, 'r') as file:
|
| 28 |
+
return file.read()
|
| 29 |
+
|
| 30 |
+
# Function to read a Markdown file
|
| 31 |
+
def markdown_to_text(md_path):
|
| 32 |
+
with open(md_path, 'r') as file:
|
| 33 |
+
return file.read()
|
| 34 |
+
|
| 35 |
# Function to split text into chunks
|
| 36 |
def split_text_into_chunks(text, chunk_size=25, chunk_overlap=5, min_chunk_chars=50):
|
| 37 |
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|
|
|
| 48 |
|
| 49 |
# Function to read chunks from files
|
| 50 |
def read_chunks_from_files(output_dir):
|
| 51 |
+
chunks_dict = {}
|
| 52 |
for filename in os.listdir(output_dir):
|
| 53 |
if filename.endswith('.md') and 'chunk' in filename:
|
| 54 |
file_id = filename.split('_chunk_')[0]
|
| 55 |
chunk_path = os.path.join(output_dir, filename)
|
| 56 |
with open(chunk_path, 'r') as file:
|
| 57 |
chunk = file.read()
|
| 58 |
+
if file_id not in chunks_dict:
|
| 59 |
+
chunks_dict[file_id] = []
|
| 60 |
+
chunks_dict[file_id].append(chunk)
|
| 61 |
+
return chunks_dict
|
| 62 |
|
| 63 |
+
def process_files(uploaded_files, use_example, chunk_size, chunk_overlap, min_chunk_chars, current_chunk, direction):
|
| 64 |
+
selected_files = []
|
| 65 |
if use_example:
|
| 66 |
example_file_url = "https://gretel-datasets.s3.us-west-2.amazonaws.com/rag/GDPR_2016.pdf"
|
| 67 |
+
file_path = os.path.join(output_dir, example_file_url.split('/')[-1])
|
| 68 |
+
if not os.path.exists(file_path):
|
| 69 |
response = requests.get(example_file_url)
|
| 70 |
+
with open(file_path, 'wb') as file:
|
| 71 |
file.write(response.content)
|
| 72 |
+
selected_files = [file_path]
|
| 73 |
elif uploaded_files is not None:
|
| 74 |
for uploaded_file in uploaded_files:
|
| 75 |
+
file_path = os.path.join(output_dir, uploaded_file.name)
|
| 76 |
+
# with open(file_path, 'wb') as file:
|
| 77 |
+
# file.write(uploaded_file.read())
|
| 78 |
+
selected_files.append(file_path)
|
| 79 |
else:
|
| 80 |
+
chunk_text = "No files processed"
|
| 81 |
return None, 0, chunk_text, None
|
| 82 |
|
| 83 |
+
chunks_dict = {}
|
| 84 |
+
for file_path in selected_files:
|
| 85 |
+
file_extension = os.path.splitext(file_path)[1].lower()
|
| 86 |
+
if file_extension == '.pdf':
|
| 87 |
+
text = pdf_to_text(file_path)
|
| 88 |
+
elif file_extension == '.txt':
|
| 89 |
+
text = txt_to_text(file_path)
|
| 90 |
+
elif file_extension == '.md':
|
| 91 |
+
text = markdown_to_text(file_path)
|
| 92 |
+
else:
|
| 93 |
+
text = ""
|
| 94 |
+
|
| 95 |
markdown_text = markdownify.markdownify(text)
|
| 96 |
+
file_id = os.path.splitext(os.path.basename(file_path))[0]
|
| 97 |
markdown_path = os.path.join(output_dir, f"{file_id}.md")
|
| 98 |
with open(markdown_path, 'w') as file:
|
| 99 |
file.write(markdown_text)
|
| 100 |
chunks = split_text_into_chunks(markdown_text, chunk_size=chunk_size, chunk_overlap=chunk_overlap, min_chunk_chars=min_chunk_chars)
|
| 101 |
save_chunks(file_id, chunks, output_dir)
|
| 102 |
+
chunks_dict[file_id + file_extension] = chunks
|
| 103 |
|
| 104 |
+
all_chunks = [chunk for chunks in chunks_dict.values() for chunk in chunks]
|
|
|
|
| 105 |
|
| 106 |
current_chunk += direction
|
| 107 |
if current_chunk < 0:
|
| 108 |
current_chunk = 0
|
| 109 |
+
elif current_chunk >= len(all_chunks):
|
| 110 |
+
current_chunk = len(all_chunks) - 1
|
| 111 |
|
| 112 |
+
chunk_text = all_chunks[current_chunk] if all_chunks else "No chunks available."
|
| 113 |
+
|
| 114 |
+
return chunks_dict, selected_files, chunk_text, current_chunk#, use_example_update
|
| 115 |
|
| 116 |
+
def show_chunks(chunks_dict, selected_files, current_chunk, direction):
|
| 117 |
+
all_chunks = [chunk for chunks in chunks_dict.values() for chunk in chunks]
|
| 118 |
+
|
| 119 |
+
current_chunk += direction
|
| 120 |
+
if current_chunk < 0:
|
| 121 |
+
current_chunk = 0
|
| 122 |
+
elif current_chunk >= len(all_chunks):
|
| 123 |
+
current_chunk = len(all_chunks) - 1
|
| 124 |
+
|
| 125 |
+
chunk_text = all_chunks[current_chunk] if all_chunks else "No chunks available."
|
| 126 |
+
return chunk_text, current_chunk
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
# Validate API key and return button state
|
| 129 |
def check_api_key(api_key):
|
|
|
|
| 136 |
status_message = "Invalid"
|
| 137 |
return gr.update(interactive=is_valid), status_message
|
| 138 |
|
| 139 |
+
def generate_synthetic_records(api_key, chunks_dict, num_records):
|
| 140 |
|
| 141 |
gretel = Gretel(api_key=api_key, validate=True, clear=True)
|
| 142 |
|
|
|
|
| 162 |
"top_k": 40
|
| 163 |
}
|
| 164 |
|
| 165 |
+
EVAL_PROMPT = """
|
| 166 |
+
Add the following columns to the provided table based on the generated text in the `answer` column:
|
| 167 |
+
* conformance: A rating from 'Poor' to 'Excellent' indicating the conformance of the generated text to the requested format, tags, and descriptions provided.
|
| 168 |
+
- 'Poor', 'Fair', 'Good', 'Very Good', 'Excellent'
|
| 169 |
+
* quality: A rating from 'Poor' to 'Excellent' based on the grammatical correctness, coherence, and relevance of the generated text.
|
| 170 |
+
- 'Poor', 'Fair', 'Good', 'Very Good', 'Excellent'
|
| 171 |
+
* toxicity: A rating from 'Non-Toxic' to 'Highly Toxic' indicating the level of toxic content in the generated text.
|
| 172 |
+
- 'Non-Toxic', 'Moderately Toxic', 'Highly Toxic'
|
| 173 |
+
* bias: A rating from 'Unbiased' to 'Heavily Biased' indicating the level of unintended biases in the generated text.
|
| 174 |
+
- 'Unbiased', 'Moderately Biased', 'Heavily Biased'
|
| 175 |
+
* groundedness: A rating from 'Ungrounded' to 'Fully Grounded' indicating the level of factual correctness in the generated text.
|
| 176 |
+
- 'Ungrounded', 'Moderately Grounded', 'Fully Grounded'
|
| 177 |
+
"""
|
| 178 |
+
|
| 179 |
+
EVAL_GENERATE_PARAMS = {
|
| 180 |
+
"temperature": 0.2,
|
| 181 |
+
"top_p": 0.5,
|
| 182 |
+
"top_k": 40
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
df_in = pd.DataFrame()
|
| 186 |
try:
|
| 187 |
+
documents = list(chunks_dict.keys())
|
| 188 |
+
all_chunks = [(doc, chunk) for doc in documents for chunk in chunks_dict[doc]]
|
| 189 |
|
| 190 |
for _ in range(num_records):
|
| 191 |
doc, chunk = random.choice(all_chunks)
|
|
|
|
| 194 |
|
| 195 |
df = navigator.edit(PROMPT, seed_data=df_in, **GENERATE_PARAMS)
|
| 196 |
df = df.drop(columns=['text'])
|
| 197 |
+
df = navigator.edit(EVAL_PROMPT, seed_data=df, **EVAL_GENERATE_PARAMS)
|
| 198 |
+
df.rename(columns={
|
| 199 |
+
"question": "synthetic_question",
|
| 200 |
+
"answer": "synthetic_answer",
|
| 201 |
+
"context": "original_context"
|
| 202 |
+
}, inplace=True)
|
| 203 |
+
|
| 204 |
csv_file = os.path.join(output_dir, "synthetic_qa.csv")
|
| 205 |
df.to_csv(csv_file, index=False)
|
| 206 |
|
|
|
|
| 215 |
return csv_file
|
| 216 |
|
| 217 |
# CSS styling to center the logo and prevent right-click download
|
| 218 |
+
logo_css = """
|
| 219 |
<style>
|
| 220 |
#logo-container {
|
| 221 |
display: flex;
|
|
|
|
| 230 |
|
| 231 |
# HTML content to include the logo
|
| 232 |
html_content = f"""
|
| 233 |
+
{logo_css}
|
| 234 |
<div id="logo-container">
|
| 235 |
<svg width="181" height="72" viewBox="0 0 181 72" fill="none" xmlns="http://www.w3.org/2000/svg">
|
| 236 |
<g clip-path="url(#clip0_849_78)">
|
|
|
|
| 252 |
</div>
|
| 253 |
"""
|
| 254 |
|
| 255 |
+
# Define custom CSS to set the font size
|
| 256 |
+
css = """
|
| 257 |
+
#small span{
|
| 258 |
+
font-size: 0.8em;
|
| 259 |
+
}
|
| 260 |
+
"""
|
| 261 |
+
|
| 262 |
# Gradio interface
|
| 263 |
+
with gr.Blocks(css=css) as demo:
|
| 264 |
with gr.Row():
|
| 265 |
with gr.Column(scale=3):
|
|
|
|
|
|
|
| 266 |
gr.HTML(html_content)
|
| 267 |
|
| 268 |
+
with gr.Tab("Upload Files"):
|
| 269 |
use_example = gr.Checkbox(label="Continue with Example PDF", value=False, interactive=True)
|
| 270 |
+
uploaded_files = gr.File(label="Upload your files (TXT, Markdown, or PDF)", file_count="multiple", file_types=[".pdf", ".txt", ".md"])
|
|
|
|
|
|
|
| 271 |
|
| 272 |
chunk_size = gr.Slider(label="Chunk Size (tokens)", minimum=10, maximum=1500, step=10, value=500)
|
| 273 |
chunk_overlap = gr.Slider(label="Chunk Overlap (tokens)", minimum=0, maximum=500, step=5, value=100)
|
| 274 |
min_chunk_chars = gr.Slider(label="Minimum Chunk Characters", minimum=10, maximum=2500, step=10, value=750)
|
| 275 |
|
| 276 |
+
process_button = gr.Button("Process Files")
|
| 277 |
|
| 278 |
+
chunks_dict = gr.State()
|
| 279 |
+
selected_files = gr.State()
|
| 280 |
current_chunk = gr.State(value=0)
|
| 281 |
|
| 282 |
chunk_text = gr.Textbox(label="Chunk Text", lines=10)
|
| 283 |
|
| 284 |
def toggle_use_example(file_list):
|
| 285 |
return gr.update(
|
| 286 |
+
value=False,
|
| 287 |
interactive=file_list is None or len(file_list) == 0
|
| 288 |
+
)
|
| 289 |
|
| 290 |
uploaded_files.change(
|
| 291 |
toggle_use_example,
|
|
|
|
| 294 |
)
|
| 295 |
|
| 296 |
process_button.click(
|
| 297 |
+
process_files,
|
| 298 |
inputs=[uploaded_files, use_example, chunk_size, chunk_overlap, min_chunk_chars, current_chunk, gr.State(0)],
|
| 299 |
+
outputs=[chunks_dict, selected_files, chunk_text, current_chunk]
|
| 300 |
)
|
| 301 |
|
| 302 |
with gr.Row():
|
|
|
|
| 305 |
|
| 306 |
prev_button.click(
|
| 307 |
show_chunks,
|
| 308 |
+
inputs=[chunks_dict, selected_files, current_chunk, gr.State(-1)],
|
| 309 |
outputs=[chunk_text, current_chunk]
|
| 310 |
)
|
| 311 |
|
| 312 |
next_button.click(
|
| 313 |
show_chunks,
|
| 314 |
+
inputs=[chunks_dict, selected_files, current_chunk, gr.State(1)],
|
| 315 |
outputs=[chunk_text, current_chunk]
|
| 316 |
)
|
| 317 |
|
|
|
|
| 322 |
api_key_input = gr.Textbox(label="Gretel API Key (available at https://console.gretel.ai)", type="password", placeholder="Enter your API key", scale=2)
|
| 323 |
validate_status = gr.Textbox(label="Validation Status", interactive=False, scale=1)
|
| 324 |
|
|
|
|
| 325 |
num_records = gr.Number(label="Number of Records", value=10)
|
| 326 |
|
| 327 |
generate_button = gr.Button("Generate Synthetic Records", interactive=False)
|
| 328 |
download_link = gr.File(label="Download Link", visible=False)
|
| 329 |
|
|
|
|
| 330 |
api_key_input.change(
|
| 331 |
fn=check_api_key,
|
| 332 |
inputs=[api_key_input],
|
| 333 |
outputs=[generate_button, validate_status]
|
| 334 |
)
|
| 335 |
|
| 336 |
+
output_df = gr.Dataframe(headers=["",], wrap=True, visible=True, elem_id="small")
|
| 337 |
|
| 338 |
+
def generate_and_prepare_download(api_key, chunks_dict, num_records):
|
| 339 |
+
df, csv_file = generate_synthetic_records(api_key, chunks_dict, num_records)
|
| 340 |
return df, gr.update(value=csv_file, visible=df['value']!=None)
|
| 341 |
|
| 342 |
generate_button.click(
|
| 343 |
fn=generate_and_prepare_download,
|
| 344 |
+
inputs=[api_key_input, chunks_dict, num_records],
|
| 345 |
outputs=[output_df, download_link]
|
| 346 |
)
|
| 347 |
|