Commit
·
3fd3fa4
1
Parent(s):
dc9ded5
Update document_questioner_app.py
Browse files- document_questioner_app.py +73 -31
document_questioner_app.py
CHANGED
|
@@ -6,11 +6,12 @@ from langchain.document_loaders import PyPDFLoader
|
|
| 6 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 7 |
from langchain.vectorstores import Chroma
|
| 8 |
from langchain.indexes import VectorstoreIndexCreator
|
| 9 |
-
from langchain.chains import
|
| 10 |
from langchain.prompts import PromptTemplate
|
| 11 |
from langchain.chat_models import ChatOpenAI
|
|
|
|
| 12 |
|
| 13 |
-
def
|
| 14 |
|
| 15 |
# loads a PDF document
|
| 16 |
if not Document:
|
|
@@ -20,48 +21,89 @@ def question_document(Document, Question):
|
|
| 20 |
|
| 21 |
loader = PyPDFLoader(Document.name)
|
| 22 |
docs = loader.load()
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Create embeddings
|
| 25 |
embeddings = OpenAIEmbeddings(openai_api_key = os.environ['OpenaiKey'])
|
| 26 |
|
| 27 |
# Write in DB
|
| 28 |
-
docsearch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Define LLM
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
# Customize map_reduce prompts
|
| 34 |
-
question_template = """{context}
|
| 35 |
-
Precise the number starting the above text in your answer. It corresponds to its page number in the document it is from. Label this number as "page".
|
| 36 |
-
Also make sure to answer in the same langage than the following question.
|
| 37 |
-
QUESTION : {question}
|
| 38 |
-
ANSWER :
|
| 39 |
-
"""
|
| 40 |
|
| 41 |
-
combine_template = """{summaries}
|
| 42 |
-
Note that the above text is based on transient extracts from one source document.
|
| 43 |
-
So make sure to not mention different documents or extracts or passages or portions or texts. There is only one, entire document.
|
| 44 |
-
Also make sure to answer in the same langage than the following question.
|
| 45 |
-
QUESTION : {question}.
|
| 46 |
-
ANSWER :
|
| 47 |
-
"""
|
| 48 |
|
| 49 |
-
question_prompt = PromptTemplate(template = question_template, input_variables=['context', 'question'])
|
| 50 |
-
combine_prompt = PromptTemplate(template = combine_template, input_variables=['summaries', 'question'])
|
| 51 |
|
| 52 |
# Define chain
|
| 53 |
-
chain_type_kwargs = { "combine_prompt" : combine_prompt, "question_prompt" : question_prompt} #, "return_intermediate_steps" : True}
|
| 54 |
-
qa = RetrievalQAWithSourcesChain.from_chain_type(llm = llm, chain_type = "map_reduce", chain_type_kwargs = chain_type_kwargs, retriever=docsearch.as_retriever(), return_source_documents = True)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 7 |
from langchain.vectorstores import Chroma
|
| 8 |
from langchain.indexes import VectorstoreIndexCreator
|
| 9 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 10 |
from langchain.prompts import PromptTemplate
|
| 11 |
from langchain.chat_models import ChatOpenAI
|
| 12 |
+
from langchain.llms import OpenAI
|
| 13 |
|
| 14 |
+
def load_document(Document):
|
| 15 |
|
| 16 |
# loads a PDF document
|
| 17 |
if not Document:
|
|
|
|
| 21 |
|
| 22 |
loader = PyPDFLoader(Document.name)
|
| 23 |
docs = loader.load()
|
| 24 |
+
global k
|
| 25 |
+
k = len(docs)
|
| 26 |
|
| 27 |
# Create embeddings
|
| 28 |
embeddings = OpenAIEmbeddings(openai_api_key = os.environ['OpenaiKey'])
|
| 29 |
|
| 30 |
# Write in DB
|
| 31 |
+
global docsearch
|
| 32 |
+
docsearch = Chroma.from_documents(docs, embeddings, ids=["page" + str(d.metadata["page"]) for d in docs], k=1)
|
| 33 |
+
global chat_history
|
| 34 |
+
chat_history = []
|
| 35 |
+
|
| 36 |
+
return "Endodage créé"
|
| 37 |
+
|
| 38 |
+
def get_chat_history(inputs) -> str:
|
| 39 |
+
res = []
|
| 40 |
+
for human, ai in inputs:
|
| 41 |
+
res.append(f"Question : {human}\nRéponse : {ai}")
|
| 42 |
+
return "\n".join(res)
|
| 43 |
+
|
| 44 |
+
def question_document(Question):
|
| 45 |
+
|
| 46 |
+
if "docsearch" not in globals():
|
| 47 |
+
return "Merci d'encoder un document PDF"
|
| 48 |
|
| 49 |
# Define LLM
|
| 50 |
+
turbo = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, openai_api_key = os.environ['OpenaiKey'])
|
| 51 |
+
davinci = OpenAI(model_name = "text-davinci-003", openai_api_key = os.environ['OpenaiKey'])
|
| 52 |
|
| 53 |
# Customize map_reduce prompts
|
| 54 |
+
#question_template = """{context}
|
| 55 |
+
#Precise the number starting the above text in your answer. It corresponds to its page number in the document it is from. Label this number as "page".
|
| 56 |
+
#Also make sure to answer in the same langage than the following question.
|
| 57 |
+
#QUESTION : {question}
|
| 58 |
+
#ANSWER :
|
| 59 |
+
#"""
|
| 60 |
|
| 61 |
+
#combine_template = """{summaries}
|
| 62 |
+
#Note that the above text is based on transient extracts from one source document.
|
| 63 |
+
#So make sure to not mention different documents or extracts or passages or portions or texts. There is only one, entire document.
|
| 64 |
+
#Also make sure to answer in the same langage than the following question.
|
| 65 |
+
#QUESTION : {question}.
|
| 66 |
+
#ANSWER :
|
| 67 |
+
#"""
|
| 68 |
|
| 69 |
+
#question_prompt = PromptTemplate(template = question_template, input_variables=['context', 'question'])
|
| 70 |
+
#combine_prompt = PromptTemplate(template = combine_template, input_variables=['summaries', 'question'])
|
| 71 |
|
| 72 |
# Define chain
|
| 73 |
+
#chain_type_kwargs = { "combine_prompt" : combine_prompt, "question_prompt" : question_prompt} #, "return_intermediate_steps" : True}
|
| 74 |
+
#qa = RetrievalQAWithSourcesChain.from_chain_type(llm = llm, chain_type = "map_reduce", chain_type_kwargs = chain_type_kwargs, retriever=docsearch.as_retriever(), return_source_documents = True)
|
| 75 |
|
| 76 |
+
vectordbkwargs = {"search_distance": 10}
|
| 77 |
+
search_kwargs={"k" : k}
|
| 78 |
+
|
| 79 |
+
qa = ConversationalRetrievalChain.from_llm(llm = turbo, chain_type = "map_reduce",retriever=docsearch.as_retriever(search_kwargs = search_kwargs), get_chat_history = get_chat_history, return_source_documents = True)
|
| 80 |
+
answer = qa({"question" : Question,"chat_history":chat_history, "vectordbkwargs": vectordbkwargs}, return_only_outputs = True)
|
| 81 |
+
chat_history.append((Question, answer["answer"]))
|
| 82 |
+
#answer = qa({"question" : Question}, )
|
| 83 |
+
print(answer)
|
| 84 |
+
return "".join(get_chat_history(chat_history))
|
| 85 |
|
| 86 |
+
with gr.Blocks() as demo:
|
| 87 |
+
|
| 88 |
+
gr.Markdown(
|
| 89 |
+
"""
|
| 90 |
+
# Interrogateur de PDF
|
| 91 |
+
par Nicolas et Alex
|
| 92 |
+
""")
|
| 93 |
+
|
| 94 |
+
with gr.Row():
|
| 95 |
+
|
| 96 |
+
with gr.Column():
|
| 97 |
+
input_file = gr.inputs.File(label="Charger un document")
|
| 98 |
+
greet_btnee = gr.Button("Encoder le document")
|
| 99 |
+
output_words = gr.outputs.Textbox(label="Encodage")
|
| 100 |
+
greet_btnee.click(fn=load_document, inputs=input_file, outputs = output_words)
|
| 101 |
|
| 102 |
+
with gr.Column():
|
| 103 |
+
text = gr.inputs.Textbox(label="Question")
|
| 104 |
+
greet_btn = gr.Button("Poser une question")
|
| 105 |
+
answer = gr.Textbox(label = "Réponse", lines = 8)
|
| 106 |
+
greet_btn.click(fn = question_document, inputs = text, outputs = answer)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
demo.launch()
|