Spaces:
Sleeping
Sleeping
File size: 27,359 Bytes
01d5a5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
from typing import Dict, List, Any, Optional
import json
import re
import traceback
from openai import OpenAI
import numpy as np
from lpm_kernel.L1.bio import (
Cluster,
Note,
ShadeInfo,
ShadeTimeline,
ShadeMergeInfo,
ShadeMergeResponse,
)
from lpm_kernel.L1.prompt import (
PREFER_LANGUAGE_SYSTEM_PROMPT,
SHADE_INITIAL_PROMPT,
PERSON_PERSPECTIVE_SHIFT_V2_PROMPT,
SHADE_MERGE_PROMPT,
SHADE_IMPROVE_PROMPT,
SHADE_MERGE_DEFAULT_SYSTEM_PROMPT,
)
from lpm_kernel.api.services.user_llm_config_service import UserLLMConfigService
from lpm_kernel.configs.config import Config
from lpm_kernel.api.common.script_executor import ScriptExecutor
from lpm_kernel.configs.logging import get_train_process_logger
logger = get_train_process_logger()
class ShadeGenerator:
def __init__(self):
self.preferred_language = "en"
self.model_params = {
"temperature": 0,
"max_tokens": 3000,
"top_p": 0,
"frequency_penalty": 0,
"seed": 42,
"presence_penalty": 0,
"timeout": 45,
}
self.user_llm_config_service = UserLLMConfigService()
self.user_llm_config = self.user_llm_config_service.get_available_llm()
if self.user_llm_config is None:
self.client = None
self.model_name = None
else:
self.client = OpenAI(
api_key=self.user_llm_config.chat_api_key,
base_url=self.user_llm_config.chat_endpoint,
)
self.model_name = self.user_llm_config.chat_model_name
self._top_p_adjusted = False # Flag to track if top_p has been adjusted
def _fix_top_p_param(self, error_message: str) -> bool:
"""Fixes the top_p parameter if an API error indicates it's invalid.
Some LLM providers don't accept top_p=0 and require values in specific ranges.
This function checks if the error is related to top_p and adjusts it to 0.001,
which is close enough to 0 to maintain deterministic behavior while satisfying
API requirements.
Args:
error_message: Error message from the API response.
Returns:
bool: True if top_p was adjusted, False otherwise.
"""
if not self._top_p_adjusted and "top_p" in error_message.lower():
logger.warning("Fixing top_p parameter from 0 to 0.001 to comply with model API requirements")
self.model_params["top_p"] = 0.001
self._top_p_adjusted = True
return True
return False
def _call_llm_with_retry(self, messages: List[Dict[str, str]], **kwargs) -> Any:
"""Calls the LLM API with automatic retry for parameter adjustments.
This function handles making API calls to the language model while
implementing automatic parameter fixes when errors occur. If the API
rejects the call due to invalid top_p parameter, it will adjust the
parameter value and retry the call once.
Args:
messages: List of messages for the API call.
**kwargs: Additional parameters to pass to the API call.
Returns:
API response object from the language model.
Raises:
Exception: If the API call fails after all retries or for unrelated errors.
"""
try:
return self.client.chat.completions.create(
model=self.model_name,
messages=messages,
**self.model_params,
**kwargs
)
except Exception as e:
error_msg = str(e)
logger.error(f"API Error: {error_msg}")
# Try to fix top_p parameter if needed
if hasattr(e, 'response') and hasattr(e.response, 'status_code') and e.response.status_code == 400:
if self._fix_top_p_param(error_msg):
logger.info("Retrying LLM API call with adjusted top_p parameter")
return self.client.chat.completions.create(
model=self.model_name,
messages=messages,
**self.model_params,
**kwargs
)
# Re-raise the exception
raise
def _build_message(self, system_prompt: str, user_prompt: str) -> List[Dict[str, str]]:
"""Builds the message structure for the LLM API.
Args:
system_prompt: The system prompt to guide the LLM behavior.
user_prompt: The user prompt containing the actual query.
Returns:
A list of message dictionaries formatted for the LLM API.
"""
raw_message = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
if self.preferred_language:
raw_message.append(
{
"role": "system",
"content": PREFER_LANGUAGE_SYSTEM_PROMPT.format(
language=self.preferred_language
),
}
)
return raw_message
def __add_second_view_info(self, shade_info: ShadeInfo) -> ShadeInfo:
"""Adds second-person perspective information to the shade info.
Args:
shade_info: The ShadeInfo object with third-person perspective.
Returns:
Updated ShadeInfo object with second-person perspective.
"""
user_prompt = f"""Domain Name: {shade_info.name}
Domain Description: {shade_info.desc_third_view}
Domain Content: {shade_info.content_third_view}
Domain Timelines:
{
"-".join([f"{timeline.create_time}, {timeline.desc_third_view}, {timeline.ref_memory_id}" for timeline in shade_info.timelines if timeline.is_new])
}
"""
shift_perspective_message = self._build_message(
PERSON_PERSPECTIVE_SHIFT_V2_PROMPT, user_prompt
)
response = self._call_llm_with_retry(shift_perspective_message)
content = response.choices[0].message.content
shift_pattern = r"\{.*\}"
shift_perspective_result = self.__parse_json_response(content, shift_pattern)
# Check if result is None and provide default values to avoid TypeError
if shift_perspective_result is None:
logger.warning(f"Failed to parse perspective shift result, using default values: {content}")
# Create a default mapping with expected parameters
shift_perspective_result = {
"domainDesc": f"You have knowledge and experience related to {shade_info.name}.",
"domainContent": shade_info.content_third_view,
"domainTimeline": []
}
# Now it's safe to pass shift_perspective_result as kwargs
shade_info.add_second_view(**shift_perspective_result)
return shade_info
def __parse_json_response(
self, content: str, pattern: str, default_res: dict = None
) -> Dict[str, Any]:
"""Parses JSON response from LLM output.
Args:
content: The raw text response from the LLM.
pattern: Regex pattern to extract the JSON string.
default_res: Default result to return if parsing fails.
Returns:
Parsed JSON dictionary or default_res if parsing fails.
"""
matches = re.findall(pattern, content, re.DOTALL)
if not matches:
logger.error(f"No Json Found: {content}")
return default_res
try:
json_res = json.loads(matches[0])
except Exception as e:
logger.error(f"Json Parse Error: {traceback.format_exc()}-{content}")
return default_res
return json_res
def __shade_initial_postprocess(self, content: str) -> Optional[ShadeInfo]:
"""Processes the initial shade generation response.
Args:
content: Raw LLM response text.
Returns:
ShadeInfo object or empty dictionary if processing fails.
"""
shade_generate_pattern = r"\{.*\}"
shade_raw_info = self.__parse_json_response(content, shade_generate_pattern)
if not shade_raw_info:
logger.error(f"Failed to parse the shade generate result: {content}")
return {} # Return an empty dictionary
logger.info(f"Shade Generate Result: {shade_raw_info}")
raw_shade_info = ShadeInfo(
name=shade_raw_info.get("domainName", ""),
aspect=shade_raw_info.get("aspect", ""),
icon=shade_raw_info.get("icon", ""),
descThirdView=shade_raw_info.get("domainDesc", ""),
contentThirdView=shade_raw_info.get("domainContent", ""),
)
raw_shade_info.timelines = [
ShadeTimeline.from_raw_format(timeline)
for timeline in shade_raw_info.get("domainTimelines", [])
]
raw_shade_info = self.__add_second_view_info(raw_shade_info)
return raw_shade_info
def _initial_shade_process(self, new_memory_list: List[Note]) -> Optional[ShadeInfo]:
"""Processes the initial shade generation from new memories.
Args:
new_memory_list: List of new memories to generate shade from.
Returns:
A new ShadeInfo object generated from the memories.
"""
user_prompt = "\n\n".join([memory.to_str() for memory in new_memory_list])
shade_generate_message = self._build_message(SHADE_INITIAL_PROMPT, user_prompt)
response = self._call_llm_with_retry(shade_generate_message)
content = response.choices[0].message.content
logger.info(f"Shade Generate Result: {content}")
return self.__shade_initial_postprocess(content)
def _merge_shades_info(
self, old_memory_list: List[Note], shade_info_list: List[ShadeInfo]
) -> ShadeInfo:
"""Merges multiple shades into a single shade.
Args:
old_memory_list: List of existing memories.
shade_info_list: List of shade information to be merged.
Returns:
A new ShadeInfo object representing the merged shade.
"""
user_prompt = "\n\n".join(
[
f"User Interest Domain {i} Analysis:\n{old_shade_info.to_str()}"
for i, old_shade_info in enumerate(shade_info_list)
]
)
merge_shades_message = self._build_message(SHADE_MERGE_PROMPT, user_prompt)
response = self._call_llm_with_retry(merge_shades_message)
content = response.choices[0].message.content
logger.info(f"Shade Generate Result: {content}")
return self.__shade_merge_postprocess(content)
def __shade_merge_postprocess(self, content: str) -> ShadeInfo:
"""Processes the shade merging response.
Args:
content: Raw LLM response text.
Returns:
A new ShadeInfo object representing the merged shade.
Raises:
Exception: If parsing the shade generation result fails.
"""
shade_merge_pattern = r"\{.*\}"
shade_merge_info = self.__parse_json_response(content, shade_merge_pattern)
if not shade_merge_info:
raise Exception(f"Failed to parse the shade generate result: {content}")
logger.info(f"Shade Merge Result: {shade_merge_info}")
merged_shade_info = ShadeInfo(
name=shade_merge_info.get("newInterestName", ""),
aspect=shade_merge_info.get("newInterestAspect", ""),
icon=shade_merge_info.get("newInterestIcon", ""),
descThirdView=shade_merge_info.get("newInterestDesc", ""),
contentThirdView=shade_merge_info.get("newInterestContent", ""),
)
merged_shade_info.timelines = [
ShadeTimeline.from_raw_format(timeline)
for timeline in shade_merge_info.get("newInterestTimelines", [])
]
merged_shade_info = self.__add_second_view_info(merged_shade_info)
return merged_shade_info
def __shade_improve_postprocess(self, old_shade: ShadeInfo, content: str) -> ShadeInfo:
"""Processes the shade improvement response.
Args:
old_shade: The original ShadeInfo object to improve.
content: Raw LLM response text.
Returns:
Updated ShadeInfo object.
Raises:
Exception: If parsing the shade generation result fails.
"""
shade_improve_pattern = r"\{.*\}"
shade_improve_info = self.__parse_json_response(content, shade_improve_pattern)
if not shade_improve_info:
raise Exception(f"Failed to parse the shade generate result: {content}")
logger.info(f"Shade Improve Result: {shade_improve_info}")
old_shade.imporve_shade_info(**shade_improve_info)
shade_info = self.__add_second_view_info(old_shade)
return shade_info
def _improve_shade_info(
self, new_memory_list: List[Note], old_shade_info: ShadeInfo
) -> ShadeInfo:
"""Improves existing shade information with new memories.
Args:
new_memory_list: List of new memories to incorporate.
old_shade_info: Existing ShadeInfo object to improve.
Returns:
Updated ShadeInfo object.
"""
recent_memories_str = "\n\n".join(
[memory.to_str() for memory in new_memory_list]
)
user_prompt = f""" Original Shade Info:
{old_shade_info.to_str()}
Recent Memories:
{recent_memories_str}
"""
shade_improve_message = self._build_message(SHADE_IMPROVE_PROMPT, user_prompt)
response = self._call_llm_with_retry(shade_improve_message)
content = response.choices[0].message.content
logger.info(f"Shade Generate Result: {content}")
return self.__shade_improve_postprocess(old_shade_info, content)
def generate_shade(
self,
old_memory_list: List[Note],
new_memory_list: List[Note],
shade_info_list: List[ShadeInfo],
) -> Optional[ShadeInfo]:
"""Generates or updates a shade based on memories.
Each time, a batch of memories within a cluster is passed in,
so it appears that only one shade is generated here.
Args:
old_memory_list: List of existing memories.
new_memory_list: List of new memories to incorporate.
shade_info_list: List of existing ShadeInfo objects.
Returns:
A new or updated ShadeInfo object, or None if generation fails.
Raises:
Exception: If input parameters are abnormal.
"""
logger.warning(f"shade_info_list: {shade_info_list}")
logger.warning(f"old_memory_list: {old_memory_list}")
logger.warning(f"new_memory_list: {new_memory_list}")
if not (shade_info_list or old_memory_list):
logger.info(
f"Shades initial Process! Current shade have {len(new_memory_list)} memories!"
)
new_shade = self._initial_shade_process(new_memory_list)
elif shade_info_list and old_memory_list:
if len(shade_info_list) > 1:
logger.info(
f"Merge shades Process! {len(shade_info_list)} shades need to be merged!"
)
raw_shade = self._merge_shades_info(old_memory_list, shade_info_list)
else:
raw_shade = shade_info_list[0]
logger.info(
f"Update shade Process! Current shade should improve {len(new_memory_list)} memories!"
)
new_shade = self._improve_shade_info(new_memory_list, raw_shade)
else:
# Means either shade_info_list or old_memory_list is empty, indicating an abnormal backend input parameter.
logger.error(traceback.format_exc())
raise Exception(
"The shade_info_list or old_memory_list is empty! Please check the input!"
)
# Check if new_shade is an empty dictionary(focus on initial stage)
if not new_shade:
return None
return new_shade
class ShadeMerger:
def __init__(self):
self.user_llm_config_service = UserLLMConfigService()
self.user_llm_config = self.user_llm_config_service.get_available_llm()
if self.user_llm_config is None:
self.client = None
self.model_name = None
else:
self.client = OpenAI(
api_key=self.user_llm_config.chat_api_key,
base_url=self.user_llm_config.chat_endpoint,
)
self.model_name = self.user_llm_config.chat_model_name
self.model_params = {
"temperature": 0,
"max_tokens": 3000,
"top_p": 0,
"frequency_penalty": 0,
"seed": 42,
"presence_penalty": 0,
"timeout": 45,
}
self.preferred_language = "en"
self._top_p_adjusted = False # Flag to track if top_p has been adjusted
def _fix_top_p_param(self, error_message: str) -> bool:
"""Fixes the top_p parameter if an API error indicates it's invalid.
Some LLM providers don't accept top_p=0 and require values in specific ranges.
This function checks if the error is related to top_p and adjusts it to 0.001,
which is close enough to 0 to maintain deterministic behavior while satisfying
API requirements.
Args:
error_message: Error message from the API response.
Returns:
bool: True if top_p was adjusted, False otherwise.
"""
if not self._top_p_adjusted and "top_p" in error_message.lower():
logger.warning("Fixing top_p parameter from 0 to 0.001 to comply with model API requirements")
self.model_params["top_p"] = 0.001
self._top_p_adjusted = True
return True
return False
def _call_llm_with_retry(self, messages: List[Dict[str, str]], **kwargs) -> Any:
"""Calls the LLM API with automatic retry for parameter adjustments.
This function handles making API calls to the language model while
implementing automatic parameter fixes when errors occur. If the API
rejects the call due to invalid top_p parameter, it will adjust the
parameter value and retry the call once.
Args:
messages: List of messages for the API call.
**kwargs: Additional parameters to pass to the API call.
Returns:
API response object from the language model.
Raises:
Exception: If the API call fails after all retries or for unrelated errors.
"""
try:
return self.client.chat.completions.create(
model=self.model_name,
messages=messages,
**self.model_params,
**kwargs
)
except Exception as e:
error_msg = str(e)
logger.error(f"API Error: {error_msg}")
# Try to fix top_p parameter if needed
if hasattr(e, 'response') and hasattr(e.response, 'status_code') and e.response.status_code == 400:
if self._fix_top_p_param(error_msg):
logger.info("Retrying LLM API call with adjusted top_p parameter")
return self.client.chat.completions.create(
model=self.model_name,
messages=messages,
**self.model_params,
**kwargs
)
# Re-raise the exception
raise
def _build_user_prompt(self, shade_info_list: List[ShadeMergeInfo]) -> str:
"""Builds a user prompt from shade information list.
Args:
shade_info_list: List of shade merge information.
Returns:
Formatted string containing shade information.
"""
shades_str = "\n\n".join(
[
f"Shade ID: {shade.id}\n"
f"Name: {shade.name}\n"
f"Aspect: {shade.aspect}\n"
f"Description Third View: {shade.desc_third_view}\n"
f"Content Third View: {shade.content_third_view}\n"
for shade in shade_info_list
]
)
return f"""Shades List:
{shades_str}
"""
def _calculate_merged_shades_center_embed(
self, shades: List[ShadeMergeInfo]
) -> List[float]:
"""Calculates the center embedding for merged shades.
Args:
shades: List of shades to merge.
Returns:
A list of floats representing the new center embedding.
Raises:
ValueError: If no valid shades found or total cluster size is zero.
"""
if not shades:
raise ValueError("No valid shades found for the given merge list.")
total_embedding = np.zeros(
len(shades[0].cluster_info["centerEmbedding"])
) # Assuming center_embedding is a fixed-length vector
total_cluster_size = 0
for shade in shades:
cluster_size = shade.cluster_info["clusterSize"]
center_embedding = np.array(shade.cluster_info["centerEmbedding"])
total_embedding += cluster_size * center_embedding
total_cluster_size += cluster_size
if total_cluster_size == 0:
raise ValueError(
"Total cluster size is zero, cannot compute the new center embedding."
)
new_center_embedding = total_embedding / total_cluster_size
return new_center_embedding.tolist()
def _build_message(self, system_prompt: str, user_prompt: str) -> List[Dict[str, str]]:
"""Builds the message structure for the LLM API.
Args:
system_prompt: The system prompt to guide the LLM behavior.
user_prompt: The user prompt containing the actual query.
Returns:
A list of message dictionaries formatted for the LLM API.
"""
raw_message = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
if self.preferred_language:
raw_message.append(
{
"role": "system",
"content": PREFER_LANGUAGE_SYSTEM_PROMPT.format(
language=self.preferred_language
),
}
)
return raw_message
def __parse_json_response(
self, content: str, pattern: str, default_res: dict = None
) -> Any:
"""Parses JSON response from LLM output.
Args:
content: The raw text response from the LLM.
pattern: Regex pattern to extract the JSON string.
default_res: Default result to return if parsing fails.
Returns:
Parsed JSON object or default_res if parsing fails.
"""
matches = re.findall(pattern, content, re.DOTALL)
if not matches:
logger.error(f"No Json Found: {content}")
return default_res
try:
json_res = json.loads(matches[0])
except Exception as e:
logger.error(f"Json Parse Error: {traceback.format_exc()}-{content}")
return default_res
return json_res
def merge_shades(self, shade_info_list: List[ShadeMergeInfo]) -> ShadeMergeResponse:
"""Merges multiple shades based on their similarity.
Args:
shade_info_list: List of shade information to be evaluated for merging.
Returns:
ShadeMergeResponse object with merge results or error information.
"""
try:
for shade in shade_info_list:
logger.info(f"shade: {shade}")
user_prompt = self._build_user_prompt(shade_info_list)
merge_decision_message = self._build_message(
SHADE_MERGE_DEFAULT_SYSTEM_PROMPT, user_prompt
)
logger.info(f"Built merge_decision_message: {merge_decision_message}")
response = self._call_llm_with_retry(merge_decision_message)
content = response.choices[0].message.content
logger.info(f"Shade Merge Decision Result: {content}")
try:
merge_shade_list = self.__parse_json_response(content, r"\[.*\]")
logger.info(f"Parsed merge_shade_list: {merge_shade_list}")
except Exception as e:
raise Exception(
f"Failed to parse the shade merge list: {content}"
) from e
# Validate if merge_shade_list is empty
if not merge_shade_list:
final_merge_shade_list = []
else:
# Calculate new cluster embeddings for each group of shades
final_merge_shade_list = []
for group in merge_shade_list:
shade_ids = group # Directly use group as it's now a list
logger.info(f"Processing group with shadeIds: {shade_ids}")
if not shade_ids:
continue
# Fetch shades based on shadeIds
shades = [
shade for shade in shade_info_list if str(shade.id) in shade_ids
] # Ensure shade.id is string type
# Skip current group if shades is empty
if not shades:
logger.info(
f"No valid shades found for shadeIds: {shade_ids}. Skipping this group."
)
continue
# Calculate the new cluster embedding (center vector)
new_cluster_embedd = self._calculate_merged_shades_center_embed(
shades
)
logger.info(
f"Calculated new cluster embedding: {new_cluster_embedd}"
)
final_merge_shade_list.append(
{"shadeIds": shade_ids, "centerEmbedding": new_cluster_embedd}
)
result = {"mergeShadeList": final_merge_shade_list}
response = ShadeMergeResponse(result=result, success=True)
except Exception as e:
logger.error(traceback.format_exc())
response = ShadeMergeResponse(result=str(e), success=False)
return response
|