Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
-
# app.py β
|
| 2 |
|
| 3 |
-
# Quiet TF/Flax logs (PyTorch-only)
|
| 4 |
import os
|
| 5 |
os.environ["TRANSFORMERS_NO_TF"] = "1"
|
| 6 |
os.environ["TRANSFORMERS_NO_FLAX"] = "1"
|
|
@@ -11,9 +10,7 @@ from PIL import Image, ImageDraw
|
|
| 11 |
import numpy as np
|
| 12 |
import torch
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
# 1) Pretrained Age Estimator
|
| 16 |
-
# ---------------------------
|
| 17 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 18 |
|
| 19 |
HF_MODEL_ID = "nateraw/vit-age-classifier"
|
|
@@ -44,23 +41,24 @@ class PretrainedAgeEstimator:
|
|
| 44 |
for i, p in enumerate(probs))
|
| 45 |
return expected, top
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
# 2) Face detector / cropper (MTCNN)
|
| 49 |
-
# ---------------------------
|
| 50 |
from facenet_pytorch import MTCNN
|
|
|
|
| 51 |
class FaceCropper:
|
| 52 |
-
"""Detect faces
|
| 53 |
-
def __init__(self, device: str | None = None):
|
| 54 |
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
self.mtcnn = MTCNN(keep_all=True, device=self.device)
|
|
|
|
| 56 |
|
| 57 |
def _ensure_pil(self, img):
|
| 58 |
if isinstance(img, Image.Image):
|
| 59 |
return img.convert("RGB")
|
| 60 |
return Image.fromarray(img).convert("RGB")
|
| 61 |
|
| 62 |
-
def
|
| 63 |
pil = self._ensure_pil(img)
|
|
|
|
| 64 |
boxes, probs = self.mtcnn.detect(pil)
|
| 65 |
|
| 66 |
annotated = pil.copy()
|
|
@@ -69,124 +67,165 @@ class FaceCropper:
|
|
| 69 |
if boxes is None or len(boxes) == 0:
|
| 70 |
return None, annotated
|
| 71 |
|
| 72 |
-
#
|
| 73 |
-
for b, p in zip(boxes, probs):
|
| 74 |
-
x1, y1, x2, y2 = map(float, b)
|
| 75 |
-
draw.rectangle([x1, y1, x2, y2], outline=(255, 0, 0), width=3)
|
| 76 |
-
draw.text((x1, max(0, y1-12)), f"{p:.2f}", fill=(255, 0, 0))
|
| 77 |
-
|
| 78 |
-
# choose largest by area
|
| 79 |
idx = int(np.argmax([(b[2]-b[0])*(b[3]-b[1]) for b in boxes]))
|
| 80 |
if isinstance(select, int) and 0 <= select < len(boxes):
|
| 81 |
idx = select
|
| 82 |
-
x1, y1, x2, y2 = boxes[idx]
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
dtype = torch.float16 if (device == "cuda") else torch.float32
|
| 94 |
-
pipe =
|
| 95 |
-
|
| 96 |
torch_dtype=dtype,
|
| 97 |
-
safety_checker=None,
|
| 98 |
)
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
| 104 |
age_est = PretrainedAgeEstimator()
|
| 105 |
-
cropper = FaceCropper(device=age_est.device)
|
| 106 |
-
sd_pipe =
|
| 107 |
-
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
"
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
| 114 |
)
|
| 115 |
|
|
|
|
| 116 |
def _ensure_pil(img):
|
| 117 |
return img if isinstance(img, Image.Image) else Image.fromarray(img)
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
@torch.inference_mode()
|
| 120 |
-
def
|
| 121 |
if img is None:
|
| 122 |
return {}, "Please upload an image.", None
|
| 123 |
-
|
| 124 |
img = _ensure_pil(img).convert("RGB")
|
| 125 |
|
| 126 |
-
|
| 127 |
-
face = None
|
| 128 |
annotated = None
|
| 129 |
if auto_crop:
|
| 130 |
-
|
|
|
|
| 131 |
|
| 132 |
-
|
| 133 |
-
# Age prediction
|
| 134 |
-
age, top = age_est.predict(target_for_age, topk=5)
|
| 135 |
probs = {lbl: float(p) for lbl, p in top}
|
| 136 |
summary = f"**Estimated age:** {age:.1f} years"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
if
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
generator = None
|
| 146 |
if isinstance(seed, (int, float)) and int(seed) >= 0:
|
| 147 |
generator = torch.Generator(device=age_est.device).manual_seed(int(seed))
|
| 148 |
|
| 149 |
-
|
| 150 |
out = sd_pipe(
|
| 151 |
-
prompt=
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
| 156 |
generator=generator,
|
| 157 |
)
|
| 158 |
-
|
| 159 |
-
return probs, summary, cartoon
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
|
| 163 |
-
#
|
| 164 |
-
with gr.Blocks(title="Age + Cartoon (One Page)") as demo:
|
| 165 |
-
gr.Markdown("# Age Estimator + Cartoonizer")
|
| 166 |
-
gr.Markdown("Upload or capture once β get **age prediction** and a **cartoon** of the same image.")
|
| 167 |
|
| 168 |
with gr.Row():
|
| 169 |
with gr.Column(scale=1):
|
| 170 |
-
img_in = gr.Image(sources=["upload", "webcam"], type="pil",
|
| 171 |
-
|
| 172 |
-
prompt = gr.Textbox(
|
| 173 |
-
|
| 174 |
-
|
|
|
|
| 175 |
with gr.Row():
|
| 176 |
-
strength = gr.Slider(0.
|
| 177 |
-
|
| 178 |
-
steps = gr.Slider(10, 50, value=25, step=1, label="Steps")
|
| 179 |
seed = gr.Number(value=-1, precision=0, label="Seed (-1 = random)")
|
| 180 |
-
|
|
|
|
|
|
|
| 181 |
|
| 182 |
with gr.Column(scale=1):
|
| 183 |
probs_out = gr.Label(num_top_classes=5, label="Age Prediction (probabilities)")
|
| 184 |
age_md = gr.Markdown(label="Age Summary")
|
|
|
|
| 185 |
cartoon_out = gr.Image(label="Cartoon Result")
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
|
| 191 |
if __name__ == "__main__":
|
| 192 |
demo.launch()
|
|
|
|
| 1 |
+
# app.py β Age-first + FAST cartoon (Turbo), nicer framing & magical background
|
| 2 |
|
|
|
|
| 3 |
import os
|
| 4 |
os.environ["TRANSFORMERS_NO_TF"] = "1"
|
| 5 |
os.environ["TRANSFORMERS_NO_FLAX"] = "1"
|
|
|
|
| 10 |
import numpy as np
|
| 11 |
import torch
|
| 12 |
|
| 13 |
+
# ------------------ Age estimator (Hugging Face) ------------------
|
|
|
|
|
|
|
| 14 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 15 |
|
| 16 |
HF_MODEL_ID = "nateraw/vit-age-classifier"
|
|
|
|
| 41 |
for i, p in enumerate(probs))
|
| 42 |
return expected, top
|
| 43 |
|
| 44 |
+
# ------------------ Face detection with WIDER crop ------------------
|
|
|
|
|
|
|
| 45 |
from facenet_pytorch import MTCNN
|
| 46 |
+
|
| 47 |
class FaceCropper:
|
| 48 |
+
"""Detect faces; return (cropped_wide, annotated). Adds margin so face isn't full screen."""
|
| 49 |
+
def __init__(self, device: str | None = None, margin_scale: float = 1.8):
|
| 50 |
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 51 |
self.mtcnn = MTCNN(keep_all=True, device=self.device)
|
| 52 |
+
self.margin_scale = margin_scale
|
| 53 |
|
| 54 |
def _ensure_pil(self, img):
|
| 55 |
if isinstance(img, Image.Image):
|
| 56 |
return img.convert("RGB")
|
| 57 |
return Image.fromarray(img).convert("RGB")
|
| 58 |
|
| 59 |
+
def detect_and_crop_wide(self, img, select="largest"):
|
| 60 |
pil = self._ensure_pil(img)
|
| 61 |
+
W, H = pil.size
|
| 62 |
boxes, probs = self.mtcnn.detect(pil)
|
| 63 |
|
| 64 |
annotated = pil.copy()
|
|
|
|
| 67 |
if boxes is None or len(boxes) == 0:
|
| 68 |
return None, annotated
|
| 69 |
|
| 70 |
+
# choose largest face
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
idx = int(np.argmax([(b[2]-b[0])*(b[3]-b[1]) for b in boxes]))
|
| 72 |
if isinstance(select, int) and 0 <= select < len(boxes):
|
| 73 |
idx = select
|
| 74 |
+
x1, y1, x2, y2 = boxes[idx]
|
| 75 |
+
|
| 76 |
+
# draw all boxes
|
| 77 |
+
for b, p in zip(boxes, probs):
|
| 78 |
+
bx1, by1, bx2, by2 = map(float, b)
|
| 79 |
+
draw.rectangle([bx1, by1, bx2, by2], outline=(255, 0, 0), width=3)
|
| 80 |
+
draw.text((bx1, max(0, by1-12)), f"{p:.2f}", fill=(255, 0, 0))
|
| 81 |
+
|
| 82 |
+
# expand with margin
|
| 83 |
+
cx, cy = (x1 + x2) / 2.0, (y1 + y2) / 2.0
|
| 84 |
+
w, h = (x2 - x1), (y2 - y1)
|
| 85 |
+
side = max(w, h) * self.margin_scale # wider frame to include background/shoulders
|
| 86 |
+
# keep a pleasant portrait aspect (4:5)
|
| 87 |
+
target_w = side
|
| 88 |
+
target_h = side * 1.25
|
| 89 |
|
| 90 |
+
nx1 = int(max(0, cx - target_w/2))
|
| 91 |
+
nx2 = int(min(W, cx + target_w/2))
|
| 92 |
+
ny1 = int(max(0, cy - target_h/2))
|
| 93 |
+
ny2 = int(min(H, cy + target_h/2))
|
| 94 |
|
| 95 |
+
crop = pil.crop((nx1, ny1, nx2, ny2))
|
| 96 |
+
return crop, annotated
|
| 97 |
+
|
| 98 |
+
# ------------------ FAST Cartoonizer (SD-Turbo) ------------------
|
| 99 |
+
from diffusers import AutoPipelineForImage2Image
|
| 100 |
+
|
| 101 |
+
# Turbo is very fast (1β4 steps). Great for stylization on CPU/GPU.
|
| 102 |
+
TURBO_ID = "stabilityai/sd-turbo"
|
| 103 |
+
|
| 104 |
+
def load_turbo_pipe(device):
|
| 105 |
dtype = torch.float16 if (device == "cuda") else torch.float32
|
| 106 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(
|
| 107 |
+
TURBO_ID,
|
| 108 |
torch_dtype=dtype,
|
| 109 |
+
safety_checker=None,
|
| 110 |
)
|
| 111 |
+
pipe = pipe.to(device)
|
| 112 |
+
try:
|
| 113 |
+
pipe.enable_attention_slicing()
|
| 114 |
+
except Exception:
|
| 115 |
+
pass
|
| 116 |
+
return pipe
|
| 117 |
+
|
| 118 |
+
# ------------------ Init models once ------------------
|
| 119 |
age_est = PretrainedAgeEstimator()
|
| 120 |
+
cropper = FaceCropper(device=age_est.device, margin_scale=1.8) # 1.6β2.0 feels good
|
| 121 |
+
sd_pipe = load_turbo_pipe(age_est.device)
|
| 122 |
+
|
| 123 |
+
# ------------------ Prompts ------------------
|
| 124 |
+
DEFAULT_POSITIVE = (
|
| 125 |
+
"beautiful princess portrait, elegant gown, tiara, soft magical lighting, "
|
| 126 |
+
"sparkles, dreamy castle background, painterly, clean lineart, vibrant but natural colors, "
|
| 127 |
+
"storybook illustration, high quality"
|
| 128 |
+
)
|
| 129 |
+
DEFAULT_NEGATIVE = (
|
| 130 |
+
"deformed, disfigured, ugly, extra limbs, extra fingers, bad anatomy, low quality, "
|
| 131 |
+
"blurry, watermark, text, logo"
|
| 132 |
)
|
| 133 |
|
| 134 |
+
# ------------------ Helpers ------------------
|
| 135 |
def _ensure_pil(img):
|
| 136 |
return img if isinstance(img, Image.Image) else Image.fromarray(img)
|
| 137 |
|
| 138 |
+
def _resize_512(im: Image.Image):
|
| 139 |
+
# keep aspect, fit longest side to 512 (faster, fewer artifacts)
|
| 140 |
+
w, h = im.size
|
| 141 |
+
scale = 512 / max(w, h)
|
| 142 |
+
if scale < 1.0:
|
| 143 |
+
im = im.resize((int(w*scale), int(h*scale)), Image.LANCZOS)
|
| 144 |
+
return im
|
| 145 |
+
|
| 146 |
+
# ------------------ 1) Predict Age (fast) ------------------
|
| 147 |
@torch.inference_mode()
|
| 148 |
+
def predict_age_only(img, auto_crop=True):
|
| 149 |
if img is None:
|
| 150 |
return {}, "Please upload an image.", None
|
|
|
|
| 151 |
img = _ensure_pil(img).convert("RGB")
|
| 152 |
|
| 153 |
+
face_wide = None
|
|
|
|
| 154 |
annotated = None
|
| 155 |
if auto_crop:
|
| 156 |
+
face_wide, annotated = cropper.detect_and_crop_wide(img)
|
| 157 |
+
target = face_wide if face_wide is not None else img
|
| 158 |
|
| 159 |
+
age, top = age_est.predict(target, topk=5)
|
|
|
|
|
|
|
| 160 |
probs = {lbl: float(p) for lbl, p in top}
|
| 161 |
summary = f"**Estimated age:** {age:.1f} years"
|
| 162 |
+
return probs, summary, (annotated if annotated is not None else img)
|
| 163 |
+
|
| 164 |
+
# ------------------ 2) Generate Cartoon (fast) ------------------
|
| 165 |
+
@torch.inference_mode()
|
| 166 |
+
def generate_cartoon(img, prompt="", auto_crop=True, strength=0.5, steps=2, seed=-1):
|
| 167 |
+
if img is None:
|
| 168 |
+
return None
|
| 169 |
|
| 170 |
+
img = _ensure_pil(img).convert("RGB")
|
| 171 |
+
# use wide face crop to include background/shoulders
|
| 172 |
+
if auto_crop:
|
| 173 |
+
face_wide, _ = cropper.detect_and_crop_wide(img)
|
| 174 |
+
if face_wide is not None:
|
| 175 |
+
img = face_wide
|
| 176 |
+
|
| 177 |
+
img = _resize_512(img)
|
| 178 |
+
|
| 179 |
+
# prompt assembly
|
| 180 |
+
user = (prompt or "").strip()
|
| 181 |
+
pos = DEFAULT_POSITIVE if not user else f"{DEFAULT_POSITIVE}, {user}"
|
| 182 |
+
neg = DEFAULT_NEGATIVE
|
| 183 |
|
| 184 |
generator = None
|
| 185 |
if isinstance(seed, (int, float)) and int(seed) >= 0:
|
| 186 |
generator = torch.Generator(device=age_est.device).manual_seed(int(seed))
|
| 187 |
|
| 188 |
+
# Turbo likes low steps and guidance ~0
|
| 189 |
out = sd_pipe(
|
| 190 |
+
prompt=pos,
|
| 191 |
+
negative_prompt=neg,
|
| 192 |
+
image=img,
|
| 193 |
+
strength=float(strength), # 0.4β0.6 keeps identity & adds dress/background
|
| 194 |
+
guidance_scale=0.0, # Turbo typically uses 0
|
| 195 |
+
num_inference_steps=int(steps), # 1β4 steps β very fast
|
| 196 |
generator=generator,
|
| 197 |
)
|
| 198 |
+
return out.images[0]
|
|
|
|
| 199 |
|
| 200 |
+
# ------------------ UI ------------------
|
| 201 |
+
with gr.Blocks(title="Age First + Fast Cartoon") as demo:
|
| 202 |
+
gr.Markdown("# Upload or capture once β get age prediction first, then a faster cartoon β¨")
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
with gr.Row():
|
| 205 |
with gr.Column(scale=1):
|
| 206 |
+
img_in = gr.Image(sources=["upload", "webcam"], type="pil", label="Upload / Webcam")
|
| 207 |
+
auto = gr.Checkbox(True, label="Auto face crop (wide, recommended)")
|
| 208 |
+
prompt = gr.Textbox(
|
| 209 |
+
label="(Optional) Extra cartoon style",
|
| 210 |
+
placeholder="e.g., studio ghibli watercolor, soft bokeh, pastel palette"
|
| 211 |
+
)
|
| 212 |
with gr.Row():
|
| 213 |
+
strength = gr.Slider(0.3, 0.8, value=0.5, step=0.05, label="Cartoon strength")
|
| 214 |
+
steps = gr.Slider(1, 4, value=2, step=1, label="Turbo steps (1β4)")
|
|
|
|
| 215 |
seed = gr.Number(value=-1, precision=0, label="Seed (-1 = random)")
|
| 216 |
+
|
| 217 |
+
btn_age = gr.Button("Predict Age (fast)", variant="primary")
|
| 218 |
+
btn_cartoon = gr.Button("Make Cartoon (fast)", variant="secondary")
|
| 219 |
|
| 220 |
with gr.Column(scale=1):
|
| 221 |
probs_out = gr.Label(num_top_classes=5, label="Age Prediction (probabilities)")
|
| 222 |
age_md = gr.Markdown(label="Age Summary")
|
| 223 |
+
preview = gr.Image(label="Detection Preview")
|
| 224 |
cartoon_out = gr.Image(label="Cartoon Result")
|
| 225 |
|
| 226 |
+
# Wire the buttons
|
| 227 |
+
btn_age.click(fn=predict_age_only, inputs=[img_in, auto], outputs=[probs_out, age_md, preview])
|
| 228 |
+
btn_cartoon.click(fn=generate_cartoon, inputs=[img_in, prompt, auto, strength, steps, seed], outputs=cartoon_out)
|
| 229 |
|
| 230 |
if __name__ == "__main__":
|
| 231 |
demo.launch()
|