Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# app.py β Age-first + FAST cartoon (Turbo) with
|
| 2 |
|
| 3 |
import os
|
| 4 |
os.environ["TRANSFORMERS_NO_TF"] = "1"
|
|
@@ -42,12 +42,12 @@ class PretrainedAgeEstimator:
|
|
| 42 |
for i, p in enumerate(probs))
|
| 43 |
return expected, top
|
| 44 |
|
| 45 |
-
# ------------------
|
| 46 |
from facenet_pytorch import MTCNN
|
| 47 |
|
| 48 |
class FaceCropper:
|
| 49 |
-
"""Detect faces; return (
|
| 50 |
-
def __init__(self, device: Optional[str] = None, margin_scale: float = 1.
|
| 51 |
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 52 |
self.mtcnn = MTCNN(keep_all=True, device=self.device)
|
| 53 |
self.margin_scale = margin_scale
|
|
@@ -64,9 +64,8 @@ class FaceCropper:
|
|
| 64 |
|
| 65 |
annotated = pil.copy()
|
| 66 |
draw = ImageDraw.Draw(annotated)
|
| 67 |
-
|
| 68 |
if boxes is None or len(boxes) == 0:
|
| 69 |
-
return None, annotated
|
| 70 |
|
| 71 |
# draw all boxes
|
| 72 |
for b, p in zip(boxes, probs):
|
|
@@ -74,10 +73,10 @@ class FaceCropper:
|
|
| 74 |
draw.rectangle([bx1, by1, bx2, by2], outline=(255, 0, 0), width=3)
|
| 75 |
draw.text((bx1, max(0, by1-12)), f"{p:.2f}", fill=(255, 0, 0))
|
| 76 |
|
| 77 |
-
# choose largest
|
| 78 |
idx = int(np.argmax([(b[2]-b[0])*(b[3]-b[1]) for b in boxes]))
|
| 79 |
x1, y1, x2, y2 = boxes[idx]
|
| 80 |
-
# expand with margin (4:5 portrait
|
| 81 |
cx, cy = (x1 + x2) / 2.0, (y1 + y2) / 2.0
|
| 82 |
w, h = (x2 - x1), (y2 - y1)
|
| 83 |
side = max(w, h) * self.margin_scale
|
|
@@ -92,21 +91,19 @@ class FaceCropper:
|
|
| 92 |
crop = pil.crop((nx1, ny1, nx2, ny2))
|
| 93 |
return crop, annotated
|
| 94 |
|
| 95 |
-
# ------------------
|
| 96 |
from diffusers import AutoPipelineForImage2Image
|
| 97 |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 98 |
from transformers import AutoFeatureExtractor
|
| 99 |
|
| 100 |
-
# Turbo is very fast (1β4 steps). Great for stylization on CPU/GPU.
|
| 101 |
TURBO_ID = "stabilityai/sd-turbo"
|
| 102 |
|
| 103 |
def load_turbo_pipe(device):
|
| 104 |
-
dtype = torch.float16 if (
|
| 105 |
pipe = AutoPipelineForImage2Image.from_pretrained(
|
| 106 |
TURBO_ID,
|
| 107 |
-
dtype=dtype,
|
| 108 |
-
)
|
| 109 |
-
pipe = pipe.to(device)
|
| 110 |
# Safety checker ON for public Spaces
|
| 111 |
pipe.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
| 112 |
"CompVis/stable-diffusion-safety-checker"
|
|
@@ -122,10 +119,10 @@ def load_turbo_pipe(device):
|
|
| 122 |
|
| 123 |
# ------------------ Init models once ------------------
|
| 124 |
age_est = PretrainedAgeEstimator()
|
| 125 |
-
cropper = FaceCropper(device=age_est.device, margin_scale=1.85)
|
| 126 |
sd_pipe = load_turbo_pipe(age_est.device)
|
| 127 |
|
| 128 |
-
# ------------------
|
| 129 |
ROLE_CHOICES = [
|
| 130 |
"Queen/Princess", "King/Prince", "Fairy", "Elf", "Knight", "Sorcerer/Sorceress",
|
| 131 |
"Steampunk Royalty", "Cyberpunk Royalty", "Superhero", "Anime Protagonist"
|
|
@@ -157,8 +154,7 @@ EFFECTS_CHOICES = [
|
|
| 157 |
]
|
| 158 |
|
| 159 |
NEGATIVE_PROMPT = (
|
| 160 |
-
"deformed, disfigured, ugly, extra limbs, extra fingers, bad anatomy, low quality, "
|
| 161 |
-
"blurry, watermark, text, logo"
|
| 162 |
)
|
| 163 |
|
| 164 |
# ------------------ Helpers ------------------
|
|
@@ -166,7 +162,6 @@ def _ensure_pil(img):
|
|
| 166 |
return img if isinstance(img, Image.Image) else Image.fromarray(img)
|
| 167 |
|
| 168 |
def _resize_512(im: Image.Image):
|
| 169 |
-
# keep aspect, fit longest side to 512 (faster, fewer artifacts)
|
| 170 |
w, h = im.size
|
| 171 |
scale = 512 / max(w, h)
|
| 172 |
if scale < 1.0:
|
|
@@ -174,8 +169,16 @@ def _resize_512(im: Image.Image):
|
|
| 174 |
return im
|
| 175 |
|
| 176 |
def build_prompt(role, background, lighting, artstyle, colors, outfit, effects, extra):
|
| 177 |
-
|
| 178 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
role_map = {
|
| 180 |
"Queen/Princess": "regal queen/princess portrait",
|
| 181 |
"King/Prince": "regal king/prince portrait",
|
|
@@ -186,61 +189,51 @@ def build_prompt(role, background, lighting, artstyle, colors, outfit, effects,
|
|
| 186 |
"Steampunk Royalty": "steampunk royal portrait with brass filigree",
|
| 187 |
"Cyberpunk Royalty": "cyberpunk royal portrait with neon accents",
|
| 188 |
"Superhero": "heroic comic-style portrait",
|
| 189 |
-
"Anime Protagonist": "anime protagonist portrait"
|
| 190 |
}
|
| 191 |
-
if role:
|
| 192 |
-
bits.append(role_map.get(role, role))
|
| 193 |
|
| 194 |
-
|
| 195 |
for group in (background, lighting, artstyle, colors, outfit, effects):
|
| 196 |
if group and isinstance(group, list):
|
| 197 |
-
|
|
|
|
| 198 |
|
| 199 |
-
# strong general quality/style anchors
|
| 200 |
-
bits.append("clean lineart, storybook illustration, high quality")
|
| 201 |
-
|
| 202 |
-
# extra user text
|
| 203 |
extra = (extra or "").strip()
|
| 204 |
if extra:
|
| 205 |
-
|
| 206 |
|
| 207 |
-
|
| 208 |
-
return ", ".join([b for b in bits if b])
|
| 209 |
|
| 210 |
-
# ------------------
|
| 211 |
@torch.inference_mode()
|
| 212 |
def predict_age_only(img, auto_crop=True):
|
| 213 |
if img is None:
|
| 214 |
return {}, "Please upload an image.", None
|
| 215 |
-
|
| 216 |
|
| 217 |
-
face_wide = None
|
| 218 |
-
annotated = None
|
| 219 |
if auto_crop:
|
| 220 |
-
face_wide, annotated = cropper.detect_and_crop_wide(
|
| 221 |
-
target = face_wide if face_wide is not None else img
|
| 222 |
|
|
|
|
| 223 |
age, top = age_est.predict(target, topk=5)
|
| 224 |
probs = {lbl: float(p) for lbl, p in top}
|
| 225 |
summary = f"**Estimated age:** {age:.1f} years"
|
| 226 |
-
return probs, summary, (annotated if annotated is not None else
|
| 227 |
|
| 228 |
-
# ------------------ 2) Generate Cartoon (fast, largest face) ------------------
|
| 229 |
@torch.inference_mode()
|
| 230 |
def generate_cartoon(img, role, background, lighting, artstyle, colors, outfit, effects,
|
| 231 |
extra_desc, auto_crop=True, strength=0.5, steps=2, seed=-1):
|
| 232 |
if img is None:
|
| 233 |
return None
|
|
|
|
| 234 |
|
| 235 |
-
img = _ensure_pil(img).convert("RGB")
|
| 236 |
if auto_crop:
|
| 237 |
-
face_wide, _ = cropper.detect_and_crop_wide(
|
| 238 |
if face_wide is not None:
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
img = _resize_512(img)
|
| 242 |
|
| 243 |
-
|
| 244 |
prompt = build_prompt(role, background, lighting, artstyle, colors, outfit, effects, extra_desc)
|
| 245 |
|
| 246 |
generator = None
|
|
@@ -250,54 +243,51 @@ def generate_cartoon(img, role, background, lighting, artstyle, colors, outfit,
|
|
| 250 |
out = sd_pipe(
|
| 251 |
prompt=prompt,
|
| 252 |
negative_prompt=NEGATIVE_PROMPT,
|
| 253 |
-
image=
|
| 254 |
-
strength=float(strength),
|
| 255 |
-
guidance_scale=0.0,
|
| 256 |
-
num_inference_steps=int(steps)
|
| 257 |
generator=generator,
|
| 258 |
)
|
| 259 |
return out.images[0]
|
| 260 |
|
| 261 |
-
# ------------------ UI ------------------
|
| 262 |
-
with gr.Blocks(title="Age
|
| 263 |
-
gr.Markdown("
|
| 264 |
-
gr.Markdown("Largest face is used if multiple people are present.")
|
| 265 |
|
| 266 |
with gr.Row():
|
| 267 |
with gr.Column(scale=1):
|
| 268 |
img_in = gr.Image(sources=["upload", "webcam"], type="pil", label="Upload / Webcam")
|
| 269 |
-
auto = gr.Checkbox(True, label="Auto face crop (
|
| 270 |
-
|
| 271 |
-
# --- Age first
|
| 272 |
-
btn_age = gr.Button("Predict Age (fast)", variant="primary")
|
| 273 |
-
|
| 274 |
-
gr.Markdown("### Cartoon Description Hints")
|
| 275 |
-
role = gr.Dropdown(choices=ROLE_CHOICES, value="Queen/Princess", label="Role")
|
| 276 |
-
background = gr.CheckboxGroup(choices=BACKGROUND_CHOICES, label="Background")
|
| 277 |
-
lighting = gr.CheckboxGroup(choices=LIGHTING_CHOICES, label="Lighting")
|
| 278 |
-
artstyle = gr.CheckboxGroup(choices=ARTSTYLE_CHOICES, label="Art Style")
|
| 279 |
-
colors = gr.CheckboxGroup(choices=COLOR_CHOICES, label="Color Mood")
|
| 280 |
-
outfit = gr.CheckboxGroup(choices=OUTFIT_CHOICES, label="Outfit / Accessories")
|
| 281 |
-
effects = gr.CheckboxGroup(choices=EFFECTS_CHOICES, label="Magical Effects")
|
| 282 |
-
extra = gr.Textbox(
|
| 283 |
-
label="Extra description (optional)",
|
| 284 |
-
placeholder="e.g., silver tiara, flowing gown, castle balcony at sunset"
|
| 285 |
-
)
|
| 286 |
|
|
|
|
| 287 |
with gr.Row():
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
with gr.Column(scale=1):
|
| 295 |
-
probs_out = gr.Label(num_top_classes=5, label="Age Prediction
|
| 296 |
age_md = gr.Markdown(label="Age Summary")
|
| 297 |
preview = gr.Image(label="Detection Preview")
|
| 298 |
cartoon_out = gr.Image(label="Cartoon Result")
|
| 299 |
|
| 300 |
-
# Wire
|
| 301 |
btn_age.click(fn=predict_age_only, inputs=[img_in, auto], outputs=[probs_out, age_md, preview])
|
| 302 |
btn_cartoon.click(
|
| 303 |
fn=generate_cartoon,
|
|
@@ -306,7 +296,7 @@ with gr.Blocks(title="Age First + Fast Cartoon (with Hint Pickers)") as demo:
|
|
| 306 |
outputs=cartoon_out
|
| 307 |
)
|
| 308 |
|
| 309 |
-
# Expose
|
| 310 |
app = demo
|
| 311 |
|
| 312 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
# app.py β Compact UI: Age-first + FAST cartoon (Turbo) with collapsible advanced options
|
| 2 |
|
| 3 |
import os
|
| 4 |
os.environ["TRANSFORMERS_NO_TF"] = "1"
|
|
|
|
| 42 |
for i, p in enumerate(probs))
|
| 43 |
return expected, top
|
| 44 |
|
| 45 |
+
# ------------------ Largest-face detector with nice margin ------------------
|
| 46 |
from facenet_pytorch import MTCNN
|
| 47 |
|
| 48 |
class FaceCropper:
|
| 49 |
+
"""Detect faces; return (wide_crop, annotated). Largest face only; adds margin so face isn't full screen."""
|
| 50 |
+
def __init__(self, device: Optional[str] = None, margin_scale: float = 1.85):
|
| 51 |
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 52 |
self.mtcnn = MTCNN(keep_all=True, device=self.device)
|
| 53 |
self.margin_scale = margin_scale
|
|
|
|
| 64 |
|
| 65 |
annotated = pil.copy()
|
| 66 |
draw = ImageDraw.Draw(annotated)
|
|
|
|
| 67 |
if boxes is None or len(boxes) == 0:
|
| 68 |
+
return None, annotated
|
| 69 |
|
| 70 |
# draw all boxes
|
| 71 |
for b, p in zip(boxes, probs):
|
|
|
|
| 73 |
draw.rectangle([bx1, by1, bx2, by2], outline=(255, 0, 0), width=3)
|
| 74 |
draw.text((bx1, max(0, by1-12)), f"{p:.2f}", fill=(255, 0, 0))
|
| 75 |
|
| 76 |
+
# choose largest
|
| 77 |
idx = int(np.argmax([(b[2]-b[0])*(b[3]-b[1]) for b in boxes]))
|
| 78 |
x1, y1, x2, y2 = boxes[idx]
|
| 79 |
+
# expand with margin (approx 4:5 portrait)
|
| 80 |
cx, cy = (x1 + x2) / 2.0, (y1 + y2) / 2.0
|
| 81 |
w, h = (x2 - x1), (y2 - y1)
|
| 82 |
side = max(w, h) * self.margin_scale
|
|
|
|
| 91 |
crop = pil.crop((nx1, ny1, nx2, ny2))
|
| 92 |
return crop, annotated
|
| 93 |
|
| 94 |
+
# ------------------ Fast Cartoonizer (SD-Turbo) with safety ------------------
|
| 95 |
from diffusers import AutoPipelineForImage2Image
|
| 96 |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 97 |
from transformers import AutoFeatureExtractor
|
| 98 |
|
|
|
|
| 99 |
TURBO_ID = "stabilityai/sd-turbo"
|
| 100 |
|
| 101 |
def load_turbo_pipe(device):
|
| 102 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 103 |
pipe = AutoPipelineForImage2Image.from_pretrained(
|
| 104 |
TURBO_ID,
|
| 105 |
+
dtype=dtype, # β
no deprecation warning
|
| 106 |
+
).to(device)
|
|
|
|
| 107 |
# Safety checker ON for public Spaces
|
| 108 |
pipe.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
| 109 |
"CompVis/stable-diffusion-safety-checker"
|
|
|
|
| 119 |
|
| 120 |
# ------------------ Init models once ------------------
|
| 121 |
age_est = PretrainedAgeEstimator()
|
| 122 |
+
cropper = FaceCropper(device=age_est.device, margin_scale=1.85)
|
| 123 |
sd_pipe = load_turbo_pipe(age_est.device)
|
| 124 |
|
| 125 |
+
# ------------------ Hint choices (with defaults) ------------------
|
| 126 |
ROLE_CHOICES = [
|
| 127 |
"Queen/Princess", "King/Prince", "Fairy", "Elf", "Knight", "Sorcerer/Sorceress",
|
| 128 |
"Steampunk Royalty", "Cyberpunk Royalty", "Superhero", "Anime Protagonist"
|
|
|
|
| 154 |
]
|
| 155 |
|
| 156 |
NEGATIVE_PROMPT = (
|
| 157 |
+
"deformed, disfigured, ugly, extra limbs, extra fingers, bad anatomy, low quality, blurry, watermark, text, logo"
|
|
|
|
| 158 |
)
|
| 159 |
|
| 160 |
# ------------------ Helpers ------------------
|
|
|
|
| 162 |
return img if isinstance(img, Image.Image) else Image.fromarray(img)
|
| 163 |
|
| 164 |
def _resize_512(im: Image.Image):
|
|
|
|
| 165 |
w, h = im.size
|
| 166 |
scale = 512 / max(w, h)
|
| 167 |
if scale < 1.0:
|
|
|
|
| 169 |
return im
|
| 170 |
|
| 171 |
def build_prompt(role, background, lighting, artstyle, colors, outfit, effects, extra):
|
| 172 |
+
"""Defaults always exist; user selections override them."""
|
| 173 |
+
# Defaults (applied if user doesn't choose)
|
| 174 |
+
role = role or "Queen/Princess"
|
| 175 |
+
background = background or ["castle balcony at sunset"]
|
| 176 |
+
lighting = lighting or ["soft magical lighting"]
|
| 177 |
+
artstyle = artstyle or ["storybook illustration"]
|
| 178 |
+
colors = colors or ["vibrant colors"]
|
| 179 |
+
outfit = outfit or ["elegant gown", "jeweled tiara/crown"]
|
| 180 |
+
effects = effects or ["sparkles", "glowing particles"]
|
| 181 |
+
|
| 182 |
role_map = {
|
| 183 |
"Queen/Princess": "regal queen/princess portrait",
|
| 184 |
"King/Prince": "regal king/prince portrait",
|
|
|
|
| 189 |
"Steampunk Royalty": "steampunk royal portrait with brass filigree",
|
| 190 |
"Cyberpunk Royalty": "cyberpunk royal portrait with neon accents",
|
| 191 |
"Superhero": "heroic comic-style portrait",
|
| 192 |
+
"Anime Protagonist": "anime protagonist portrait",
|
| 193 |
}
|
|
|
|
|
|
|
| 194 |
|
| 195 |
+
parts = [role_map.get(role, role)]
|
| 196 |
for group in (background, lighting, artstyle, colors, outfit, effects):
|
| 197 |
if group and isinstance(group, list):
|
| 198 |
+
parts.append(", ".join(group))
|
| 199 |
+
parts.append("clean lineart, high quality")
|
| 200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
extra = (extra or "").strip()
|
| 202 |
if extra:
|
| 203 |
+
parts.append(extra)
|
| 204 |
|
| 205 |
+
return ", ".join([p for p in parts if p])
|
|
|
|
| 206 |
|
| 207 |
+
# ------------------ Actions ------------------
|
| 208 |
@torch.inference_mode()
|
| 209 |
def predict_age_only(img, auto_crop=True):
|
| 210 |
if img is None:
|
| 211 |
return {}, "Please upload an image.", None
|
| 212 |
+
pil = _ensure_pil(img).convert("RGB")
|
| 213 |
|
| 214 |
+
face_wide, annotated = (None, None)
|
|
|
|
| 215 |
if auto_crop:
|
| 216 |
+
face_wide, annotated = cropper.detect_and_crop_wide(pil)
|
|
|
|
| 217 |
|
| 218 |
+
target = face_wide if face_wide is not None else pil
|
| 219 |
age, top = age_est.predict(target, topk=5)
|
| 220 |
probs = {lbl: float(p) for lbl, p in top}
|
| 221 |
summary = f"**Estimated age:** {age:.1f} years"
|
| 222 |
+
return probs, summary, (annotated if annotated is not None else pil)
|
| 223 |
|
|
|
|
| 224 |
@torch.inference_mode()
|
| 225 |
def generate_cartoon(img, role, background, lighting, artstyle, colors, outfit, effects,
|
| 226 |
extra_desc, auto_crop=True, strength=0.5, steps=2, seed=-1):
|
| 227 |
if img is None:
|
| 228 |
return None
|
| 229 |
+
pil = _ensure_pil(img).convert("RGB")
|
| 230 |
|
|
|
|
| 231 |
if auto_crop:
|
| 232 |
+
face_wide, _ = cropper.detect_and_crop_wide(pil)
|
| 233 |
if face_wide is not None:
|
| 234 |
+
pil = face_wide
|
|
|
|
|
|
|
| 235 |
|
| 236 |
+
pil = _resize_512(pil)
|
| 237 |
prompt = build_prompt(role, background, lighting, artstyle, colors, outfit, effects, extra_desc)
|
| 238 |
|
| 239 |
generator = None
|
|
|
|
| 243 |
out = sd_pipe(
|
| 244 |
prompt=prompt,
|
| 245 |
negative_prompt=NEGATIVE_PROMPT,
|
| 246 |
+
image=pil,
|
| 247 |
+
strength=float(strength), # 0.4β0.6 keeps identity & adds dress/background
|
| 248 |
+
guidance_scale=0.0, # Turbo likes 0
|
| 249 |
+
num_inference_steps=int(steps),# 1β4 β fast
|
| 250 |
generator=generator,
|
| 251 |
)
|
| 252 |
return out.images[0]
|
| 253 |
|
| 254 |
+
# ------------------ Compact UI ------------------
|
| 255 |
+
with gr.Blocks(title="Age + Cartoon (Compact)") as demo:
|
| 256 |
+
gr.Markdown("## Upload β Predict Age β Make Cartoon β¨")
|
| 257 |
+
gr.Markdown("Largest face is used if multiple people are present. Defaults are applied automatically.")
|
| 258 |
|
| 259 |
with gr.Row():
|
| 260 |
with gr.Column(scale=1):
|
| 261 |
img_in = gr.Image(sources=["upload", "webcam"], type="pil", label="Upload / Webcam")
|
| 262 |
+
auto = gr.Checkbox(True, label="Auto face crop (recommended)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
+
# Buttons visible immediately (no scrolling)
|
| 265 |
with gr.Row():
|
| 266 |
+
btn_age = gr.Button("Predict Age", variant="primary")
|
| 267 |
+
btn_cartoon = gr.Button("Make Cartoon", variant="secondary")
|
| 268 |
+
|
| 269 |
+
# Collapsible advanced options
|
| 270 |
+
with gr.Accordion("π¨ Advanced Cartoon Options", open=False):
|
| 271 |
+
role = gr.Dropdown(choices=ROLE_CHOICES, value="Queen/Princess", label="Role")
|
| 272 |
+
background = gr.CheckboxGroup(choices=BACKGROUND_CHOICES, value=["castle balcony at sunset"], label="Background")
|
| 273 |
+
lighting = gr.CheckboxGroup(choices=LIGHTING_CHOICES, value=["soft magical lighting"], label="Lighting")
|
| 274 |
+
artstyle = gr.CheckboxGroup(choices=ARTSTYLE_CHOICES, value=["storybook illustration"], label="Art Style")
|
| 275 |
+
colors = gr.CheckboxGroup(choices=COLOR_CHOICES, value=["vibrant colors"], label="Color Mood")
|
| 276 |
+
outfit = gr.CheckboxGroup(choices=OUTFIT_CHOICES, value=["elegant gown", "jeweled tiara/crown"], label="Outfit / Accessories")
|
| 277 |
+
effects = gr.CheckboxGroup(choices=EFFECTS_CHOICES, value=["sparkles", "glowing particles"], label="Magical Effects")
|
| 278 |
+
extra = gr.Textbox(label="Extra description (optional)", placeholder="e.g., silver tiara, flowing gown, balcony at sunset")
|
| 279 |
+
with gr.Row():
|
| 280 |
+
strength = gr.Slider(0.3, 0.8, value=0.5, step=0.05, label="Cartoon strength")
|
| 281 |
+
steps = gr.Slider(1, 4, value=2, step=1, label="Turbo steps (1β4)")
|
| 282 |
+
seed = gr.Number(value=-1, precision=0, label="Seed (-1 = random)")
|
| 283 |
|
| 284 |
with gr.Column(scale=1):
|
| 285 |
+
probs_out = gr.Label(num_top_classes=5, label="Age Prediction")
|
| 286 |
age_md = gr.Markdown(label="Age Summary")
|
| 287 |
preview = gr.Image(label="Detection Preview")
|
| 288 |
cartoon_out = gr.Image(label="Cartoon Result")
|
| 289 |
|
| 290 |
+
# Wire events
|
| 291 |
btn_age.click(fn=predict_age_only, inputs=[img_in, auto], outputs=[probs_out, age_md, preview])
|
| 292 |
btn_cartoon.click(
|
| 293 |
fn=generate_cartoon,
|
|
|
|
| 296 |
outputs=cartoon_out
|
| 297 |
)
|
| 298 |
|
| 299 |
+
# Expose for HF Spaces
|
| 300 |
app = demo
|
| 301 |
|
| 302 |
if __name__ == "__main__":
|