Spaces:
Sleeping
Sleeping
jomasego
commited on
Commit
Β·
3e48648
1
Parent(s):
282ce8f
feat: Replace Anthropic with Llama 3 for video analysis
Browse files- README.md +7 -7
- app.py +59 -143
- requirements.txt +0 -1
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title: MCP Video Analysis with
|
| 3 |
emoji: π₯
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: blue
|
|
@@ -8,10 +8,10 @@ sdk_version: 5.33.1
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
-
short_description: AI-powered video analysis with
|
| 12 |
---
|
| 13 |
|
| 14 |
-
# π₯ MCP Video Analysis with
|
| 15 |
|
| 16 |
This application provides comprehensive video analysis using the Model Context Protocol (MCP) to integrate multiple AI technologies:
|
| 17 |
|
|
@@ -19,7 +19,7 @@ This application provides comprehensive video analysis using the Model Context P
|
|
| 19 |
- **Modal Backend**: Scalable cloud compute for video processing
|
| 20 |
- **Whisper**: Speech-to-text transcription
|
| 21 |
- **Computer Vision Models**: Object detection, action recognition, and captioning
|
| 22 |
-
- **
|
| 23 |
- **MCP Protocol**: Model Context Protocol for seamless integration
|
| 24 |
|
| 25 |
## π― Features
|
|
@@ -32,10 +32,10 @@ This application provides comprehensive video analysis using the Model Context P
|
|
| 32 |
1. Enter a video URL (YouTube or direct link)
|
| 33 |
2. Optionally ask a specific question
|
| 34 |
3. Click "Analyze Video" to get comprehensive insights
|
| 35 |
-
4. Review both
|
| 36 |
|
| 37 |
## π Environment Variables Required
|
| 38 |
-
- `
|
| 39 |
-
- `MODAL_VIDEO_ANALYSIS_ENDPOINT_URL`: Modal
|
| 40 |
|
| 41 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: MCP Video Analysis with Llama 3
|
| 3 |
emoji: π₯
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: blue
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
+
short_description: AI-powered video analysis with Llama 3 and Modal
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# π₯ MCP Video Analysis with Llama 3
|
| 15 |
|
| 16 |
This application provides comprehensive video analysis using the Model Context Protocol (MCP) to integrate multiple AI technologies:
|
| 17 |
|
|
|
|
| 19 |
- **Modal Backend**: Scalable cloud compute for video processing
|
| 20 |
- **Whisper**: Speech-to-text transcription
|
| 21 |
- **Computer Vision Models**: Object detection, action recognition, and captioning
|
| 22 |
+
- **Meta Llama 3**: Advanced AI for intelligent content analysis, hosted on Modal
|
| 23 |
- **MCP Protocol**: Model Context Protocol for seamless integration
|
| 24 |
|
| 25 |
## π― Features
|
|
|
|
| 32 |
1. Enter a video URL (YouTube or direct link)
|
| 33 |
2. Optionally ask a specific question
|
| 34 |
3. Click "Analyze Video" to get comprehensive insights
|
| 35 |
+
4. Review both Llama 3's intelligent analysis and raw data
|
| 36 |
|
| 37 |
## π Environment Variables Required
|
| 38 |
+
- `MODAL_LLAMA3_ENDPOINT_URL`: The URL for the deployed Llama 3 Modal service.
|
| 39 |
+
- `MODAL_VIDEO_ANALYSIS_ENDPOINT_URL`: The URL for the video processing Modal service (optional, has a default value).
|
| 40 |
|
| 41 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -1,174 +1,90 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
MCP Video Analysis Client with
|
| 4 |
|
| 5 |
This application serves as an MCP (Model Context Protocol) client that:
|
| 6 |
1. Connects to video analysis tools via MCP
|
| 7 |
-
2. Integrates with
|
| 8 |
3. Provides a Gradio interface for user interaction
|
| 9 |
"""
|
| 10 |
|
| 11 |
import os
|
| 12 |
import json
|
| 13 |
-
import asyncio
|
| 14 |
import logging
|
| 15 |
-
from typing import Dict, Any,
|
| 16 |
import gradio as gr
|
| 17 |
import httpx
|
| 18 |
-
from anthropic import Anthropic
|
| 19 |
|
| 20 |
# Configure logging
|
| 21 |
logging.basicConfig(level=logging.INFO)
|
| 22 |
logger = logging.getLogger(__name__)
|
| 23 |
|
| 24 |
class MCPVideoAnalysisClient:
|
| 25 |
-
"""MCP Client for video analysis with
|
| 26 |
|
| 27 |
def __init__(self):
|
| 28 |
-
#
|
| 29 |
-
self.
|
| 30 |
-
if not self.anthropic_api_key:
|
| 31 |
-
raise ValueError("ANTHROPIC_API_KEY environment variable is required")
|
| 32 |
-
|
| 33 |
-
self.anthropic_client = Anthropic(api_key=self.anthropic_api_key)
|
| 34 |
-
|
| 35 |
-
# Modal backend endpoint
|
| 36 |
-
self.modal_endpoint = os.getenv(
|
| 37 |
"MODAL_VIDEO_ANALYSIS_ENDPOINT_URL",
|
| 38 |
"https://jomasego--video-analysis-gradio-pipeline-process-video-analysis.modal.run"
|
| 39 |
)
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
async def analyze_video_with_modal(self, video_url: str) -> Dict[str, Any]:
|
| 44 |
"""Call the Modal backend for comprehensive video analysis."""
|
| 45 |
try:
|
| 46 |
async with httpx.AsyncClient(timeout=300.0) as client:
|
| 47 |
-
logger.info(f"Calling
|
| 48 |
response = await client.post(
|
| 49 |
-
self.
|
| 50 |
json={"video_url": video_url},
|
| 51 |
headers={"Content-Type": "application/json"}
|
| 52 |
)
|
| 53 |
response.raise_for_status()
|
| 54 |
return response.json()
|
| 55 |
except Exception as e:
|
| 56 |
-
logger.error(f"Error calling
|
| 57 |
-
return {"error": f"
|
| 58 |
|
| 59 |
-
def
|
| 60 |
-
"""
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
analysis_summary = self._format_analysis_for_claude(video_analysis)
|
| 64 |
-
|
| 65 |
-
# Create the prompt for Claude
|
| 66 |
-
system_prompt = """You are an expert video analyst with deep knowledge of multimedia content, storytelling, and visual communication. You excel at interpreting video analysis data and providing meaningful insights.
|
| 67 |
-
|
| 68 |
-
Your task is to analyze the provided video analysis data and give intelligent, actionable insights. Focus on:
|
| 69 |
-
1. Content understanding and themes
|
| 70 |
-
2. Visual storytelling elements
|
| 71 |
-
3. Technical quality assessment
|
| 72 |
-
4. Audience engagement potential
|
| 73 |
-
5. Key moments and highlights
|
| 74 |
-
6. Contextual relevance
|
| 75 |
-
|
| 76 |
-
Be concise but thorough, and tailor your response to be useful for content creators, marketers, or researchers."""
|
| 77 |
-
|
| 78 |
-
if user_query:
|
| 79 |
-
user_prompt = f"""Here is the video analysis data:
|
| 80 |
-
|
| 81 |
-
{analysis_summary}
|
| 82 |
-
|
| 83 |
-
User's specific question: {user_query}
|
| 84 |
-
|
| 85 |
-
Please provide a comprehensive analysis addressing the user's question while incorporating insights from all the available data."""
|
| 86 |
-
else:
|
| 87 |
-
user_prompt = f"""Here is the video analysis data:
|
| 88 |
-
|
| 89 |
-
{analysis_summary}
|
| 90 |
-
|
| 91 |
-
Please provide a comprehensive analysis of this video, highlighting the most important insights and potential applications."""
|
| 92 |
|
| 93 |
try:
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
except Exception as e:
|
| 105 |
-
logger.error(f"Error calling
|
| 106 |
-
return f"Error generating
|
| 107 |
-
|
| 108 |
-
def _format_analysis_for_claude(self, analysis: Dict[str, Any]) -> str:
|
| 109 |
-
"""Format the video analysis data for Claude consumption."""
|
| 110 |
-
formatted = []
|
| 111 |
-
|
| 112 |
-
# Handle transcription
|
| 113 |
-
if "transcription" in analysis:
|
| 114 |
-
transcription = analysis["transcription"]
|
| 115 |
-
if isinstance(transcription, str) and not transcription.startswith("Error"):
|
| 116 |
-
formatted.append(f"**TRANSCRIPTION:**\n{transcription}\n")
|
| 117 |
-
else:
|
| 118 |
-
formatted.append(f"**TRANSCRIPTION:** {transcription}\n")
|
| 119 |
-
|
| 120 |
-
# Handle caption
|
| 121 |
-
if "caption" in analysis:
|
| 122 |
-
caption = analysis["caption"]
|
| 123 |
-
if isinstance(caption, str) and not caption.startswith("Error"):
|
| 124 |
-
formatted.append(f"**VIDEO CAPTION:**\n{caption}\n")
|
| 125 |
-
else:
|
| 126 |
-
formatted.append(f"**VIDEO CAPTION:** {caption}\n")
|
| 127 |
-
|
| 128 |
-
# Handle actions
|
| 129 |
-
if "actions" in analysis:
|
| 130 |
-
actions = analysis["actions"]
|
| 131 |
-
if isinstance(actions, list) and actions:
|
| 132 |
-
action_text = []
|
| 133 |
-
for action in actions:
|
| 134 |
-
if isinstance(action, dict):
|
| 135 |
-
if "error" in action:
|
| 136 |
-
action_text.append(f"Error: {action['error']}")
|
| 137 |
-
else:
|
| 138 |
-
# Format action detection results
|
| 139 |
-
action_text.append(str(action))
|
| 140 |
-
else:
|
| 141 |
-
action_text.append(str(action))
|
| 142 |
-
formatted.append(f"**ACTION RECOGNITION:**\n{'; '.join(action_text)}\n")
|
| 143 |
-
else:
|
| 144 |
-
formatted.append(f"**ACTION RECOGNITION:** {actions}\n")
|
| 145 |
-
|
| 146 |
-
# Handle objects
|
| 147 |
-
if "objects" in analysis:
|
| 148 |
-
objects = analysis["objects"]
|
| 149 |
-
if isinstance(objects, list) and objects:
|
| 150 |
-
object_text = []
|
| 151 |
-
for obj in objects:
|
| 152 |
-
if isinstance(obj, dict):
|
| 153 |
-
if "error" in obj:
|
| 154 |
-
object_text.append(f"Error: {obj['error']}")
|
| 155 |
-
else:
|
| 156 |
-
# Format object detection results
|
| 157 |
-
object_text.append(str(obj))
|
| 158 |
-
else:
|
| 159 |
-
object_text.append(str(obj))
|
| 160 |
-
formatted.append(f"**OBJECT DETECTION:**\n{'; '.join(object_text)}\n")
|
| 161 |
-
else:
|
| 162 |
-
formatted.append(f"**OBJECT DETECTION:** {objects}\n")
|
| 163 |
-
|
| 164 |
-
# Handle any errors
|
| 165 |
-
if "error" in analysis:
|
| 166 |
-
formatted.append(f"**ANALYSIS ERROR:**\n{analysis['error']}\n")
|
| 167 |
-
|
| 168 |
-
return "\n".join(formatted) if formatted else "No analysis data available."
|
| 169 |
|
| 170 |
async def process_video_request(self, video_url: str, user_query: str = None) -> tuple[str, str]:
|
| 171 |
-
"""Process a complete video analysis request with
|
| 172 |
if not video_url or not video_url.strip():
|
| 173 |
return "Please provide a valid video URL.", ""
|
| 174 |
|
|
@@ -180,11 +96,11 @@ Please provide a comprehensive analysis of this video, highlighting the most imp
|
|
| 180 |
# Step 2: Format the raw analysis for display
|
| 181 |
raw_analysis = json.dumps(video_analysis, indent=2)
|
| 182 |
|
| 183 |
-
# Step 3: Enhance with
|
| 184 |
-
logger.info("Generating
|
| 185 |
-
|
| 186 |
|
| 187 |
-
return
|
| 188 |
|
| 189 |
except Exception as e:
|
| 190 |
error_msg = f"Error processing video request: {str(e)}"
|
|
@@ -211,7 +127,7 @@ def create_gradio_interface():
|
|
| 211 |
"""Create and configure the Gradio interface."""
|
| 212 |
|
| 213 |
with gr.Blocks(
|
| 214 |
-
title="MCP Video Analysis with
|
| 215 |
theme=gr.themes.Soft(),
|
| 216 |
css="""
|
| 217 |
.gradio-container {
|
|
@@ -230,8 +146,8 @@ def create_gradio_interface():
|
|
| 230 |
|
| 231 |
gr.HTML("""
|
| 232 |
<div class="main-header">
|
| 233 |
-
<h1>π₯ MCP Video Analysis with
|
| 234 |
-
<p>Intelligent video content analysis powered by Modal backend and
|
| 235 |
</div>
|
| 236 |
""")
|
| 237 |
|
|
@@ -254,8 +170,8 @@ def create_gradio_interface():
|
|
| 254 |
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 255 |
|
| 256 |
with gr.Column(scale=2):
|
| 257 |
-
|
| 258 |
-
label="π€
|
| 259 |
lines=20,
|
| 260 |
elem_classes=["analysis-output"],
|
| 261 |
interactive=False
|
|
@@ -287,10 +203,10 @@ def create_gradio_interface():
|
|
| 287 |
This application combines multiple AI technologies to provide comprehensive video analysis:
|
| 288 |
|
| 289 |
### π§ Technology Stack
|
| 290 |
-
- **Modal Backend**: Scalable cloud compute for video processing
|
| 291 |
- **Whisper**: Speech-to-text transcription
|
| 292 |
- **Computer Vision Models**: Object detection, action recognition, and captioning
|
| 293 |
-
- **
|
| 294 |
- **MCP Protocol**: Model Context Protocol for seamless integration
|
| 295 |
|
| 296 |
### π― Features
|
|
@@ -303,7 +219,7 @@ def create_gradio_interface():
|
|
| 303 |
1. Enter a video URL (YouTube or direct link)
|
| 304 |
2. Optionally ask a specific question
|
| 305 |
3. Click "Analyze Video" to get comprehensive insights
|
| 306 |
-
4. Review both
|
| 307 |
|
| 308 |
### π Privacy & Security
|
| 309 |
- Video processing is handled securely in the cloud
|
|
@@ -318,13 +234,13 @@ def create_gradio_interface():
|
|
| 318 |
analyze_btn.click(
|
| 319 |
fn=analyze_video_interface,
|
| 320 |
inputs=[video_url_input, user_query_input],
|
| 321 |
-
outputs=[
|
| 322 |
show_progress=True
|
| 323 |
)
|
| 324 |
|
| 325 |
clear_btn.click(
|
| 326 |
fn=clear_all,
|
| 327 |
-
outputs=[video_url_input, user_query_input,
|
| 328 |
)
|
| 329 |
|
| 330 |
return interface
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
MCP Video Analysis Client with Llama 3 Integration
|
| 4 |
|
| 5 |
This application serves as an MCP (Model Context Protocol) client that:
|
| 6 |
1. Connects to video analysis tools via MCP
|
| 7 |
+
2. Integrates with a Llama 3 model hosted on Modal for intelligent video understanding
|
| 8 |
3. Provides a Gradio interface for user interaction
|
| 9 |
"""
|
| 10 |
|
| 11 |
import os
|
| 12 |
import json
|
|
|
|
| 13 |
import logging
|
| 14 |
+
from typing import Dict, Any, Optional
|
| 15 |
import gradio as gr
|
| 16 |
import httpx
|
|
|
|
| 17 |
|
| 18 |
# Configure logging
|
| 19 |
logging.basicConfig(level=logging.INFO)
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
|
| 22 |
class MCPVideoAnalysisClient:
|
| 23 |
+
"""MCP Client for video analysis with Llama 3 integration."""
|
| 24 |
|
| 25 |
def __init__(self):
|
| 26 |
+
# Modal backend for video processing
|
| 27 |
+
self.video_analysis_endpoint = os.getenv(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
"MODAL_VIDEO_ANALYSIS_ENDPOINT_URL",
|
| 29 |
"https://jomasego--video-analysis-gradio-pipeline-process-video-analysis.modal.run"
|
| 30 |
)
|
| 31 |
|
| 32 |
+
# Modal backend for Llama 3 insights
|
| 33 |
+
self.llama_endpoint = os.getenv(
|
| 34 |
+
"MODAL_LLAMA3_ENDPOINT_URL"
|
| 35 |
+
# This will be set to the deployed Llama 3 app URL.
|
| 36 |
+
# e.g., "https://jomasego--llama3-inference-service-summarize.modal.run"
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
logger.info(f"Initialized MCP Client.")
|
| 40 |
+
logger.info(f"Video Analysis Endpoint: {self.video_analysis_endpoint}")
|
| 41 |
+
if not self.llama_endpoint:
|
| 42 |
+
logger.warning("MODAL_LLAMA3_ENDPOINT_URL not set. LLM insights will be unavailable.")
|
| 43 |
+
else:
|
| 44 |
+
logger.info(f"Llama 3 Endpoint: {self.llama_endpoint}")
|
| 45 |
+
|
| 46 |
async def analyze_video_with_modal(self, video_url: str) -> Dict[str, Any]:
|
| 47 |
"""Call the Modal backend for comprehensive video analysis."""
|
| 48 |
try:
|
| 49 |
async with httpx.AsyncClient(timeout=300.0) as client:
|
| 50 |
+
logger.info(f"Calling video analysis backend: {video_url}")
|
| 51 |
response = await client.post(
|
| 52 |
+
self.video_analysis_endpoint,
|
| 53 |
json={"video_url": video_url},
|
| 54 |
headers={"Content-Type": "application/json"}
|
| 55 |
)
|
| 56 |
response.raise_for_status()
|
| 57 |
return response.json()
|
| 58 |
except Exception as e:
|
| 59 |
+
logger.error(f"Error calling video analysis backend: {e}")
|
| 60 |
+
return {"error": f"Video analysis backend error: {str(e)}"}
|
| 61 |
|
| 62 |
+
async def get_insights_from_llama3(self, analysis_data: Dict[str, Any], user_query: Optional[str] = None) -> str:
|
| 63 |
+
"""Call the Llama 3 Modal backend for intelligent insights."""
|
| 64 |
+
if not self.llama_endpoint:
|
| 65 |
+
return "Llama 3 endpoint is not configured. Cannot generate insights."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
try:
|
| 68 |
+
payload = {
|
| 69 |
+
"analysis_data": analysis_data,
|
| 70 |
+
"user_query": user_query
|
| 71 |
+
}
|
| 72 |
+
async with httpx.AsyncClient(timeout=300.0) as client:
|
| 73 |
+
logger.info(f"Calling Llama 3 Modal backend for insights.")
|
| 74 |
+
response = await client.post(
|
| 75 |
+
self.llama_endpoint,
|
| 76 |
+
json=payload,
|
| 77 |
+
headers={"Content-Type": "application/json"}
|
| 78 |
+
)
|
| 79 |
+
response.raise_for_status()
|
| 80 |
+
result = response.json()
|
| 81 |
+
return result.get("summary", "No summary returned from Llama 3 service.")
|
| 82 |
except Exception as e:
|
| 83 |
+
logger.error(f"Error calling Llama 3 backend: {e}")
|
| 84 |
+
return f"Error generating Llama 3 insights: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
async def process_video_request(self, video_url: str, user_query: str = None) -> tuple[str, str]:
|
| 87 |
+
"""Process a complete video analysis request with Llama 3 enhancement."""
|
| 88 |
if not video_url or not video_url.strip():
|
| 89 |
return "Please provide a valid video URL.", ""
|
| 90 |
|
|
|
|
| 96 |
# Step 2: Format the raw analysis for display
|
| 97 |
raw_analysis = json.dumps(video_analysis, indent=2)
|
| 98 |
|
| 99 |
+
# Step 3: Enhance with Llama 3 insights
|
| 100 |
+
logger.info("Generating Llama 3 insights...")
|
| 101 |
+
llama_insights = await self.get_insights_from_llama3(video_analysis, user_query)
|
| 102 |
|
| 103 |
+
return llama_insights, raw_analysis
|
| 104 |
|
| 105 |
except Exception as e:
|
| 106 |
error_msg = f"Error processing video request: {str(e)}"
|
|
|
|
| 127 |
"""Create and configure the Gradio interface."""
|
| 128 |
|
| 129 |
with gr.Blocks(
|
| 130 |
+
title="MCP Video Analysis with Llama 3",
|
| 131 |
theme=gr.themes.Soft(),
|
| 132 |
css="""
|
| 133 |
.gradio-container {
|
|
|
|
| 146 |
|
| 147 |
gr.HTML("""
|
| 148 |
<div class="main-header">
|
| 149 |
+
<h1>π₯ MCP Video Analysis with Llama 3 AI</h1>
|
| 150 |
+
<p>Intelligent video content analysis powered by a Modal backend and Llama 3</p>
|
| 151 |
</div>
|
| 152 |
""")
|
| 153 |
|
|
|
|
| 170 |
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 171 |
|
| 172 |
with gr.Column(scale=2):
|
| 173 |
+
llama_output = gr.Textbox(
|
| 174 |
+
label="π€ Llama 3 AI Insights",
|
| 175 |
lines=20,
|
| 176 |
elem_classes=["analysis-output"],
|
| 177 |
interactive=False
|
|
|
|
| 203 |
This application combines multiple AI technologies to provide comprehensive video analysis:
|
| 204 |
|
| 205 |
### π§ Technology Stack
|
| 206 |
+
- **Modal Backend**: Scalable cloud compute for video processing and LLM inference
|
| 207 |
- **Whisper**: Speech-to-text transcription
|
| 208 |
- **Computer Vision Models**: Object detection, action recognition, and captioning
|
| 209 |
+
- **Meta Llama 3**: Advanced AI for intelligent content analysis
|
| 210 |
- **MCP Protocol**: Model Context Protocol for seamless integration
|
| 211 |
|
| 212 |
### π― Features
|
|
|
|
| 219 |
1. Enter a video URL (YouTube or direct link)
|
| 220 |
2. Optionally ask a specific question
|
| 221 |
3. Click "Analyze Video" to get comprehensive insights
|
| 222 |
+
4. Review both Llama 3's intelligent analysis and raw data
|
| 223 |
|
| 224 |
### π Privacy & Security
|
| 225 |
- Video processing is handled securely in the cloud
|
|
|
|
| 234 |
analyze_btn.click(
|
| 235 |
fn=analyze_video_interface,
|
| 236 |
inputs=[video_url_input, user_query_input],
|
| 237 |
+
outputs=[llama_output, raw_analysis_output],
|
| 238 |
show_progress=True
|
| 239 |
)
|
| 240 |
|
| 241 |
clear_btn.click(
|
| 242 |
fn=clear_all,
|
| 243 |
+
outputs=[video_url_input, user_query_input, llama_output, raw_analysis_output]
|
| 244 |
)
|
| 245 |
|
| 246 |
return interface
|
requirements.txt
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
gradio>=4.0.0
|
| 2 |
-
anthropic>=0.40.0
|
| 3 |
httpx>=0.25.0
|
| 4 |
asyncio-compat>=0.1.0
|
|
|
|
| 1 |
gradio>=4.0.0
|
|
|
|
| 2 |
httpx>=0.25.0
|
| 3 |
asyncio-compat>=0.1.0
|