Spaces:
Sleeping
Sleeping
actual fix hopefully
Browse files
app.py
CHANGED
|
@@ -1,14 +1,11 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
# import lightning
|
| 4 |
from minicons import cwe
|
| 5 |
import pandas as pd
|
| 6 |
import numpy as np
|
| 7 |
|
| 8 |
from model import FeatureNormPredictor
|
| 9 |
|
| 10 |
-
import sys
|
| 11 |
-
sys.path.insert(0, '/home/jjr4354/semantic-features')
|
| 12 |
|
| 13 |
def predict (word, sentence, lm_name, layer, norm):
|
| 14 |
if word not in sentence: return "invalid input: word not in sentence"
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
|
|
|
| 3 |
from minicons import cwe
|
| 4 |
import pandas as pd
|
| 5 |
import numpy as np
|
| 6 |
|
| 7 |
from model import FeatureNormPredictor
|
| 8 |
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def predict (word, sentence, lm_name, layer, norm):
|
| 11 |
if word not in sentence: return "invalid input: word not in sentence"
|
model.py
ADDED
|
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import lightning
|
| 3 |
+
from torch.utils.data import Dataset
|
| 4 |
+
from typing import Any, Dict
|
| 5 |
+
import argparse
|
| 6 |
+
from pydantic import BaseModel
|
| 7 |
+
from get_dataset_dictionaries import get_dict_pair
|
| 8 |
+
import os
|
| 9 |
+
import shutil
|
| 10 |
+
|
| 11 |
+
import optuna
|
| 12 |
+
from optuna.integration import PyTorchLightningPruningCallback
|
| 13 |
+
from functools import partial
|
| 14 |
+
|
| 15 |
+
class FFNModule(torch.nn.Module):
|
| 16 |
+
"""
|
| 17 |
+
A pytorch module that regresses from a hidden state representation of a word
|
| 18 |
+
to its continuous linguistic feature norm vector.
|
| 19 |
+
|
| 20 |
+
It is a FFN with the general structure of:
|
| 21 |
+
input -> (linear -> nonlinearity -> dropout) x (num_layers - 1) -> linear -> output
|
| 22 |
+
"""
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
input_size: int,
|
| 26 |
+
output_size: int,
|
| 27 |
+
hidden_size: int,
|
| 28 |
+
num_layers: int,
|
| 29 |
+
dropout: float,
|
| 30 |
+
):
|
| 31 |
+
super(FFNModule, self).__init__()
|
| 32 |
+
|
| 33 |
+
layers = []
|
| 34 |
+
for _ in range(num_layers - 1):
|
| 35 |
+
layers.append(torch.nn.Linear(input_size, hidden_size))
|
| 36 |
+
layers.append(torch.nn.ReLU())
|
| 37 |
+
layers.append(torch.nn.Dropout(dropout))
|
| 38 |
+
# changes input size to hidden size after first layer
|
| 39 |
+
input_size = hidden_size
|
| 40 |
+
layers.append(torch.nn.Linear(hidden_size, output_size))
|
| 41 |
+
self.network = torch.nn.Sequential(*layers)
|
| 42 |
+
|
| 43 |
+
def forward(self, x):
|
| 44 |
+
return self.network(x)
|
| 45 |
+
|
| 46 |
+
class FFNParams(BaseModel):
|
| 47 |
+
input_size: int
|
| 48 |
+
output_size: int
|
| 49 |
+
hidden_size: int
|
| 50 |
+
num_layers: int
|
| 51 |
+
dropout: float
|
| 52 |
+
|
| 53 |
+
class TrainingParams(BaseModel):
|
| 54 |
+
num_epochs: int
|
| 55 |
+
batch_size: int
|
| 56 |
+
learning_rate: float
|
| 57 |
+
weight_decay: float
|
| 58 |
+
|
| 59 |
+
class FeatureNormPredictor(lightning.LightningModule):
|
| 60 |
+
def __init__(self, ffn_params : FFNParams, training_params : TrainingParams):
|
| 61 |
+
super().__init__()
|
| 62 |
+
self.save_hyperparameters()
|
| 63 |
+
self.ffn_params = ffn_params
|
| 64 |
+
self.training_params = training_params
|
| 65 |
+
self.model = FFNModule(**ffn_params.model_dump())
|
| 66 |
+
self.loss_function = torch.nn.MSELoss()
|
| 67 |
+
self.training_params = training_params
|
| 68 |
+
|
| 69 |
+
def training_step(self, batch, batch_idx):
|
| 70 |
+
x,y = batch
|
| 71 |
+
outputs = self.model(x)
|
| 72 |
+
loss = self.loss_function(outputs, y)
|
| 73 |
+
self.log("train_loss", loss)
|
| 74 |
+
return loss
|
| 75 |
+
|
| 76 |
+
def validation_step(self, batch, batch_idx):
|
| 77 |
+
x,y = batch
|
| 78 |
+
outputs = self.model(x)
|
| 79 |
+
loss = self.loss_function(outputs, y)
|
| 80 |
+
self.log("val_loss", loss, on_epoch=True, prog_bar=True)
|
| 81 |
+
return loss
|
| 82 |
+
|
| 83 |
+
def test_step(self, batch, batch_idx):
|
| 84 |
+
return self.model(batch)
|
| 85 |
+
|
| 86 |
+
def predict(self, batch):
|
| 87 |
+
return self.model(batch)
|
| 88 |
+
|
| 89 |
+
def __call__(self, input):
|
| 90 |
+
return self.model(input)
|
| 91 |
+
|
| 92 |
+
def configure_optimizers(self):
|
| 93 |
+
optimizer = torch.optim.Adam(
|
| 94 |
+
self.parameters(),
|
| 95 |
+
lr=self.training_params.learning_rate,
|
| 96 |
+
weight_decay=self.training_params.weight_decay,
|
| 97 |
+
)
|
| 98 |
+
return optimizer
|
| 99 |
+
|
| 100 |
+
def save_model(self, path: str):
|
| 101 |
+
torch.save(self.model.state_dict(), path)
|
| 102 |
+
|
| 103 |
+
def load_model(self, path: str):
|
| 104 |
+
self.model.load_state_dict(torch.load(path))
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
class HiddenStateFeatureNormDataset(Dataset):
|
| 108 |
+
def __init__(
|
| 109 |
+
self,
|
| 110 |
+
input_embeddings: Dict[str, torch.Tensor],
|
| 111 |
+
feature_norms: Dict[str, torch.Tensor],
|
| 112 |
+
):
|
| 113 |
+
|
| 114 |
+
# Invariant: input_embeddings and target_feature_norms have exactly the same keys
|
| 115 |
+
# this should be done by the train/test split and upstream data processing
|
| 116 |
+
assert(input_embeddings.keys() == feature_norms.keys())
|
| 117 |
+
|
| 118 |
+
self.words = list(input_embeddings.keys())
|
| 119 |
+
self.input_embeddings = torch.stack([
|
| 120 |
+
input_embeddings[word] for word in self.words
|
| 121 |
+
])
|
| 122 |
+
self.feature_norms = torch.stack([
|
| 123 |
+
feature_norms[word] for word in self.words
|
| 124 |
+
])
|
| 125 |
+
|
| 126 |
+
def __len__(self):
|
| 127 |
+
return len(self.words)
|
| 128 |
+
|
| 129 |
+
def __getitem__(self, idx):
|
| 130 |
+
return self.input_embeddings[idx], self.feature_norms[idx]
|
| 131 |
+
|
| 132 |
+
# this is used when not optimizing
|
| 133 |
+
def train(args : Dict[str, Any]):
|
| 134 |
+
|
| 135 |
+
# input_embeddings = torch.load(args.input_embeddings)
|
| 136 |
+
# feature_norms = torch.load(args.feature_norms)
|
| 137 |
+
# words = list(input_embeddings.keys())
|
| 138 |
+
|
| 139 |
+
input_embeddings, feature_norms, norm_list = get_dict_pair(
|
| 140 |
+
args.norm,
|
| 141 |
+
args.embedding_dir,
|
| 142 |
+
args.lm_layer,
|
| 143 |
+
translated= False if args.raw_buchanan else True,
|
| 144 |
+
normalized= True if args.normal_buchanan else False
|
| 145 |
+
)
|
| 146 |
+
norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
|
| 147 |
+
norms_file.write("\n".join(norm_list))
|
| 148 |
+
norms_file.close()
|
| 149 |
+
|
| 150 |
+
words = list(input_embeddings.keys())
|
| 151 |
+
|
| 152 |
+
model = FeatureNormPredictor(
|
| 153 |
+
FFNParams(
|
| 154 |
+
input_size=input_embeddings[words[0]].shape[0],
|
| 155 |
+
output_size=feature_norms[words[0]].shape[0],
|
| 156 |
+
hidden_size=args.hidden_size,
|
| 157 |
+
num_layers=args.num_layers,
|
| 158 |
+
dropout=args.dropout,
|
| 159 |
+
),
|
| 160 |
+
TrainingParams(
|
| 161 |
+
num_epochs=args.num_epochs,
|
| 162 |
+
batch_size=args.batch_size,
|
| 163 |
+
learning_rate=args.learning_rate,
|
| 164 |
+
weight_decay=args.weight_decay,
|
| 165 |
+
),
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# train/val split
|
| 169 |
+
train_size = int(len(words) * 0.8)
|
| 170 |
+
valid_size = len(words) - train_size
|
| 171 |
+
train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])
|
| 172 |
+
|
| 173 |
+
# TODO: Methodology Decision: should we be normalizing the hidden states/feature norms?
|
| 174 |
+
train_embeddings = {word: input_embeddings[word] for word in train_words}
|
| 175 |
+
train_feature_norms = {word: feature_norms[word] for word in train_words}
|
| 176 |
+
validation_embeddings = {word: input_embeddings[word] for word in validation_words}
|
| 177 |
+
validation_feature_norms = {word: feature_norms[word] for word in validation_words}
|
| 178 |
+
|
| 179 |
+
train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
|
| 180 |
+
train_dataloader = torch.utils.data.DataLoader(
|
| 181 |
+
train_dataset,
|
| 182 |
+
batch_size=args.batch_size,
|
| 183 |
+
shuffle=True,
|
| 184 |
+
)
|
| 185 |
+
validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
|
| 186 |
+
validation_dataloader = torch.utils.data.DataLoader(
|
| 187 |
+
validation_dataset,
|
| 188 |
+
batch_size=args.batch_size,
|
| 189 |
+
shuffle=True,
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
callbacks = [
|
| 193 |
+
lightning.pytorch.callbacks.ModelCheckpoint(
|
| 194 |
+
save_last=True,
|
| 195 |
+
dirpath=args.save_dir,
|
| 196 |
+
filename=args.save_model_name,
|
| 197 |
+
),
|
| 198 |
+
]
|
| 199 |
+
if args.early_stopping is not None:
|
| 200 |
+
callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
|
| 201 |
+
monitor="val_loss",
|
| 202 |
+
patience=args.early_stopping,
|
| 203 |
+
mode='min',
|
| 204 |
+
min_delta=0.0
|
| 205 |
+
))
|
| 206 |
+
|
| 207 |
+
#TODO Design Decision - other trainer args? Is device necessary?
|
| 208 |
+
# cpu is fine for the scale of this model - only a few layers and a few hundred words
|
| 209 |
+
trainer = lightning.Trainer(
|
| 210 |
+
max_epochs=args.num_epochs,
|
| 211 |
+
callbacks=callbacks,
|
| 212 |
+
accelerator="cpu",
|
| 213 |
+
log_every_n_steps=7
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
trainer.fit(model, train_dataloader, validation_dataloader)
|
| 217 |
+
|
| 218 |
+
trainer.validate(model, validation_dataloader)
|
| 219 |
+
|
| 220 |
+
return model
|
| 221 |
+
|
| 222 |
+
# this is used when optimizing
|
| 223 |
+
def objective(trial: optuna.trial.Trial, args: Dict[str, Any]) -> float:
|
| 224 |
+
# optimizing hidden size, batch size, and learning rate
|
| 225 |
+
input_embeddings, feature_norms, norm_list = get_dict_pair(
|
| 226 |
+
args.norm,
|
| 227 |
+
args.embedding_dir,
|
| 228 |
+
args.lm_layer,
|
| 229 |
+
translated= False if args.raw_buchanan else True,
|
| 230 |
+
normalized= True if args.normal_buchanan else False
|
| 231 |
+
)
|
| 232 |
+
norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
|
| 233 |
+
norms_file.write("\n".join(norm_list))
|
| 234 |
+
norms_file.close()
|
| 235 |
+
|
| 236 |
+
words = list(input_embeddings.keys())
|
| 237 |
+
input_size=input_embeddings[words[0]].shape[0]
|
| 238 |
+
output_size=feature_norms[words[0]].shape[0]
|
| 239 |
+
min_size = min(output_size, input_size)
|
| 240 |
+
max_size = min(output_size, 2*input_size)if min_size == input_size else min(2*output_size, input_size)
|
| 241 |
+
hidden_size = trial.suggest_int("hidden_size", min_size, max_size, log=True)
|
| 242 |
+
batch_size = trial.suggest_int("batch_size", 16, 128, log=True)
|
| 243 |
+
learning_rate = trial.suggest_float("learning_rate", 1e-6, 1, log=True)
|
| 244 |
+
|
| 245 |
+
model = FeatureNormPredictor(
|
| 246 |
+
FFNParams(
|
| 247 |
+
input_size=input_size,
|
| 248 |
+
output_size=output_size,
|
| 249 |
+
hidden_size=hidden_size,
|
| 250 |
+
num_layers=args.num_layers,
|
| 251 |
+
dropout=args.dropout,
|
| 252 |
+
),
|
| 253 |
+
TrainingParams(
|
| 254 |
+
num_epochs=args.num_epochs,
|
| 255 |
+
batch_size=batch_size,
|
| 256 |
+
learning_rate=learning_rate,
|
| 257 |
+
weight_decay=args.weight_decay,
|
| 258 |
+
),
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
# train/val split
|
| 262 |
+
train_size = int(len(words) * 0.8)
|
| 263 |
+
valid_size = len(words) - train_size
|
| 264 |
+
train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])
|
| 265 |
+
|
| 266 |
+
train_embeddings = {word: input_embeddings[word] for word in train_words}
|
| 267 |
+
train_feature_norms = {word: feature_norms[word] for word in train_words}
|
| 268 |
+
validation_embeddings = {word: input_embeddings[word] for word in validation_words}
|
| 269 |
+
validation_feature_norms = {word: feature_norms[word] for word in validation_words}
|
| 270 |
+
|
| 271 |
+
train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
|
| 272 |
+
train_dataloader = torch.utils.data.DataLoader(
|
| 273 |
+
train_dataset,
|
| 274 |
+
batch_size=args.batch_size,
|
| 275 |
+
shuffle=True,
|
| 276 |
+
)
|
| 277 |
+
validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
|
| 278 |
+
validation_dataloader = torch.utils.data.DataLoader(
|
| 279 |
+
validation_dataset,
|
| 280 |
+
batch_size=args.batch_size,
|
| 281 |
+
shuffle=True,
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
callbacks = [
|
| 285 |
+
# all trial models will be saved in temporary directory
|
| 286 |
+
lightning.pytorch.callbacks.ModelCheckpoint(
|
| 287 |
+
save_last=True,
|
| 288 |
+
dirpath=os.path.join(args.save_dir,'optuna_trials'),
|
| 289 |
+
filename="{}".format(trial.number)
|
| 290 |
+
),
|
| 291 |
+
]
|
| 292 |
+
|
| 293 |
+
if args.prune is not None:
|
| 294 |
+
callbacks.append(PyTorchLightningPruningCallback(
|
| 295 |
+
trial,
|
| 296 |
+
monitor='val_loss'
|
| 297 |
+
))
|
| 298 |
+
|
| 299 |
+
if args.early_stopping is not None:
|
| 300 |
+
callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
|
| 301 |
+
monitor="val_loss",
|
| 302 |
+
patience=args.early_stopping,
|
| 303 |
+
mode='min',
|
| 304 |
+
min_delta=0.0
|
| 305 |
+
))
|
| 306 |
+
# note that if optimizing is chosen, will automatically not implement vanilla early stopping
|
| 307 |
+
#TODO Design Decision - other trainer args? Is device necessary?
|
| 308 |
+
# cpu is fine for the scale of this model - only a few layers and a few hundred words
|
| 309 |
+
trainer = lightning.Trainer(
|
| 310 |
+
max_epochs=args.num_epochs,
|
| 311 |
+
callbacks=callbacks,
|
| 312 |
+
accelerator="cpu",
|
| 313 |
+
log_every_n_steps=7,
|
| 314 |
+
# enable_checkpointing=False
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
trainer.fit(model, train_dataloader, validation_dataloader)
|
| 318 |
+
|
| 319 |
+
trainer.validate(model, validation_dataloader)
|
| 320 |
+
|
| 321 |
+
return trainer.callback_metrics['val_loss'].item()
|
| 322 |
+
|
| 323 |
+
if __name__ == "__main__":
|
| 324 |
+
# parse args
|
| 325 |
+
parser = argparse.ArgumentParser()
|
| 326 |
+
#TODO: Design Decision: Should we input paths, to the pre-extracted layers, or the model/layer we want to generate them from
|
| 327 |
+
# required inputs
|
| 328 |
+
parser.add_argument("--norm", type=str, required=True, help="feature norm set to use")
|
| 329 |
+
parser.add_argument("--embedding_dir", type=str, required=True, help=" directory containing embeddings")
|
| 330 |
+
parser.add_argument("--lm_layer", type=int, required=True, help="layer of embeddings to use")
|
| 331 |
+
# if user selects optimize, hidden_size, batch_size and learning_rate will be optimized.
|
| 332 |
+
parser.add_argument("--optimize", action="store_true", help="optimize hyperparameters for training")
|
| 333 |
+
parser.add_argument("--prune", action="store_true", help="prune unpromising trials when optimizing")
|
| 334 |
+
# optional hyperparameter specs
|
| 335 |
+
parser.add_argument("--num_layers", type=int, default=2, help="number of layers in FFN")
|
| 336 |
+
parser.add_argument("--hidden_size", type=int, default=100, help="hidden size of FFN")
|
| 337 |
+
parser.add_argument("--dropout", type=float, default=0.1, help="dropout rate of FFN")
|
| 338 |
+
# set this to at least 100 if doing early stopping
|
| 339 |
+
parser.add_argument("--num_epochs", type=int, default=10, help="number of epochs to train for")
|
| 340 |
+
parser.add_argument("--batch_size", type=int, default=32, help="batch size for training")
|
| 341 |
+
parser.add_argument("--learning_rate", type=float, default=0.001, help="learning rate for training")
|
| 342 |
+
parser.add_argument("--weight_decay", type=float, default=0.0, help="weight decay for training")
|
| 343 |
+
parser.add_argument("--early_stopping", type=int, default=None, help="number of epochs to wait for early stopping")
|
| 344 |
+
# optional dataset specs, for buchanan really
|
| 345 |
+
parser.add_argument('--raw_buchanan', action="store_true", help="do not use translated values for buchanan")
|
| 346 |
+
parser.add_argument('--normal_buchanan', action="store_true", help="use normalized features for buchanan")
|
| 347 |
+
# required for output
|
| 348 |
+
parser.add_argument("--save_dir", type=str, required=True, help="directory to save model to")
|
| 349 |
+
parser.add_argument("--save_model_name", type=str, required=True, help="name of model to save")
|
| 350 |
+
|
| 351 |
+
args = parser.parse_args()
|
| 352 |
+
|
| 353 |
+
if args.early_stopping is not None:
|
| 354 |
+
args.num_epochs = max(50, args.num_epochs)
|
| 355 |
+
|
| 356 |
+
torch.manual_seed(10)
|
| 357 |
+
|
| 358 |
+
if args.optimize:
|
| 359 |
+
# call optimizer code here
|
| 360 |
+
print("optimizing for learning rate, batch size, and hidden size")
|
| 361 |
+
pruner = optuna.pruners.MedianPruner() if args.prune else optuna.pruners.NopPruner()
|
| 362 |
+
sampler = optuna.samplers.TPESampler(seed=10)
|
| 363 |
+
|
| 364 |
+
study = optuna.create_study(direction='minimize', pruner=pruner, sampler=sampler)
|
| 365 |
+
study.optimize(partial(objective, args=args), n_trials = 100, timeout=600)
|
| 366 |
+
|
| 367 |
+
other_params = {
|
| 368 |
+
"num_layers": args.num_layers,
|
| 369 |
+
"num_epochs": args.num_epochs,
|
| 370 |
+
"dropout": args.dropout,
|
| 371 |
+
"weight_decay": args.weight_decay,
|
| 372 |
+
}
|
| 373 |
+
|
| 374 |
+
print("Number of finished trials: {}".format(len(study.trials)))
|
| 375 |
+
|
| 376 |
+
trial = study.best_trial
|
| 377 |
+
print("Best trial: "+str(trial.number))
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
print(" Validation Loss: {}".format(trial.value))
|
| 381 |
+
|
| 382 |
+
print(" Optimized Params: ")
|
| 383 |
+
for key, value in trial.params.items():
|
| 384 |
+
print(" {}: {}".format(key, value))
|
| 385 |
+
|
| 386 |
+
print(" User Defined Params: ")
|
| 387 |
+
for key, value in other_params.items():
|
| 388 |
+
print(" {}: {}".format(key, value))
|
| 389 |
+
|
| 390 |
+
print('saving best trial')
|
| 391 |
+
for filename in os.listdir(os.path.join(args.save_dir,'optuna_trials')):
|
| 392 |
+
if filename == "{}.ckpt".format(trial.number):
|
| 393 |
+
shutil.move(os.path.join(args.save_dir,'optuna_trials',filename), os.path.join(args.save_dir, "{}.ckpt".format(args.save_model_name)))
|
| 394 |
+
shutil.rmtree(os.path.join(args.save_dir,'optuna_trials'))
|
| 395 |
+
|
| 396 |
+
else:
|
| 397 |
+
model = train(args)
|
| 398 |
+
|