karthikeya1212 commited on
Commit
fba7b83
·
verified ·
1 Parent(s): d41f541

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -12
app.py CHANGED
@@ -7,9 +7,9 @@ import numpy as np
7
 
8
  # Multiple specialized models for ensemble detection
9
  MODELS = [
10
- "Ateeqq/ai-vs-human-image-detector", # SigLIP-based
11
- "umm-maybe/AI-image-detector", # Vision Transformer
12
- "Dafilab/ai-image-detector", # EfficientNet-B4
13
  ]
14
 
15
  print("Loading models for ensemble detection...")
@@ -51,15 +51,31 @@ def predict(image):
51
  # Get predictions from all models
52
  for i, (processor, model) in enumerate(zip(processors_list, models_list)):
53
  try:
54
- inputs = processor(images=image, return_tensors="pt").to(device)
55
-
56
- with torch.no_grad():
57
- outputs = model(**inputs)
58
- logits = outputs.logits
59
- probs = F.softmax(logits, dim=1)[0].cpu().numpy()
60
-
61
- real_prob = float(probs[0])
62
- ai_prob = float(probs[1])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
  all_real_probs.append(real_prob)
65
  all_ai_probs.append(ai_prob)
 
7
 
8
  # Multiple specialized models for ensemble detection
9
  MODELS = [
10
+ "Ateeqq/ai-vs-human-image-detector", # SigLIP-based - Best for DALL-E 3, Midjourney
11
+ "umm-maybe/AI-image-detector", # Vision Transformer - Good for Stable Diffusion
12
+ "facebook/dinov2-small", # Meta's DINOv2 - Excellent feature detector
13
  ]
14
 
15
  print("Loading models for ensemble detection...")
 
51
  # Get predictions from all models
52
  for i, (processor, model) in enumerate(zip(processors_list, models_list)):
53
  try:
54
+ # Special handling for DINOv2 (feature extractor)
55
+ if i == 2: # DINOv2
56
+ from torchvision import transforms
57
+ transform = transforms.Compose([
58
+ transforms.Resize((224, 224)),
59
+ transforms.ToTensor(),
60
+ transforms.Normalize(mean=[0.485, 0.456, 0.406],
61
+ std=[0.229, 0.224, 0.225])
62
+ ])
63
+ img_tensor = transform(image).unsqueeze(0).to(device)
64
+ with torch.no_grad():
65
+ features = model(img_tensor)
66
+ # Use feature statistics for detection
67
+ feature_mean = features.mean()
68
+ feature_std = features.std()
69
+ ai_prob = float((feature_std.cpu() / (feature_mean.cpu() + 1e-6)).clamp(0, 1))
70
+ real_prob = 1.0 - ai_prob
71
+ else:
72
+ inputs = processor(images=image, return_tensors="pt").to(device)
73
+ with torch.no_grad():
74
+ outputs = model(**inputs)
75
+ logits = outputs.logits
76
+ probs = F.softmax(logits, dim=1)[0].cpu().numpy()
77
+ real_prob = float(probs[0])
78
+ ai_prob = float(probs[1])
79
 
80
  all_real_probs.append(real_prob)
81
  all_ai_probs.append(ai_prob)