File size: 5,659 Bytes
359afe5
 
 
 
 
 
45089ef
359afe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba24db
359afe5
 
 
 
 
 
 
 
45089ef
 
 
 
 
 
 
 
 
 
359afe5
 
 
 
 
aa67214
359afe5
aa67214
359afe5
 
 
 
 
8df6804
359afe5
 
 
 
 
99d9342
aa67214
99d9342
 
 
aa67214
 
 
 
359afe5
 
 
8df6804
359afe5
 
 
 
 
 
 
aa67214
359afe5
 
aa67214
359afe5
 
 
 
 
 
 
 
 
 
 
 
 
aa67214
359afe5
 
aa67214
359afe5
 
 
 
 
 
 
dba24db
45089ef
 
 
 
 
 
 
 
 
 
 
aa67214
45089ef
 
aa67214
45089ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa67214
45089ef
 
 
 
 
aa67214
45089ef
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import time
import torch
import torchaudio
from transformers import (
    Wav2Vec2Processor, HubertForCTC,
    WhisperProcessor, WhisperForConditionalGeneration, Wav2Vec2ForCTC, AutoProcessor, AutoModelForCTC
)
from .cmu_process import text_to_phoneme, cmu_to_ipa, clean_cmu

from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)

# === Helper: move all tensors to model device ===
def to_device(batch, device):
    if isinstance(batch, dict):
        return {k: v.to(device) for k, v in batch.items()}
    elif isinstance(batch, torch.Tensor):
        return batch.to(device)
    return batch
    
# === Setup: Load all 3 models ===

# 1. Base HuBERT
base_proc = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft")
base_model = HubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft").to(device).eval()

# 2. Whisper + phonemizer
whisper_proc = WhisperProcessor.from_pretrained("openai/whisper-base")
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to(device).eval()

# 3. My Hubert Model (optional HF token via env)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# print(HF_TOKEN)
proc = Wav2Vec2Processor.from_pretrained("tecasoftai/hubert-finetune", token=HF_TOKEN)
model = HubertForCTC.from_pretrained("tecasoftai/hubert-finetune", token=HF_TOKEN).to(device).eval()

# 4. wav2vec2-xls-r-300m-timit-phoneme
# load model and processor
timit_proc = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-timit-phoneme")
timit_model = Wav2Vec2ForCTC.from_pretrained("vitouphy/wav2vec2-xls-r-300m-timit-phoneme").to(device).eval()


# 5 bookbot/wav2vec2-ljspeech-gruut
gruut_processor = AutoProcessor.from_pretrained("bookbot/wav2vec2-ljspeech-gruut")
gruut_model = AutoModelForCTC.from_pretrained("bookbot/wav2vec2-ljspeech-gruut").to(device).eval()

# 6 microsoft/wavlm-large-english-phoneme
wavlm_proc = AutoProcessor.from_pretrained("speech31/wavlm-large-english-phoneme")
wavlm_model = AutoModelForCTC.from_pretrained("speech31/wavlm-large-english-phoneme").to(device).eval()


# === Inference functions ===

def run_hubert_base(wav):
    start = time.time()
    inputs = base_proc(wav, sampling_rate=16000, return_tensors="pt", padding=True).input_values
    inputs = inputs.to(device)
    
    with torch.no_grad():
        logits = base_model(inputs).logits
    ids = torch.argmax(logits, dim=-1)
    text = base_proc.batch_decode(ids)[0]
    # Convert to phonemes (CMU-like string without stresses)
    phonemes = text_to_phoneme(text)
    phonemes = cmu_to_ipa(phonemes)
    return phonemes.strip(), time.time() - start

def run_whisper(wav):
    start = time.time()

    inputs = whisper_proc(wav, sampling_rate=16000, return_tensors="pt")
    input_features = inputs.input_features.to(device)
    attention_mask = inputs.get("attention_mask", None)
    gen_kwargs = {"language": "en"}
    if attention_mask is not None:
        gen_kwargs["attention_mask"] = attention_mask.to(device)

    with torch.no_grad():
        pred_ids = whisper_model.generate(input_features, **gen_kwargs)

    text = whisper_proc.batch_decode(pred_ids, skip_special_tokens=True)[0]
    phonemes = text_to_phoneme(text)
    phonemes = cmu_to_ipa(phonemes)
    return phonemes.strip(), time.time() - start


def run_model(wav):
    start = time.time()

    # Prepare input (BatchEncoding supports .to(device))
    inputs = proc(wav, sampling_rate=16000, return_tensors="pt").to(device)

    # Forward pass
    with torch.no_grad():
        logits = model(**inputs).logits

    # Greedy decode
    ids = torch.argmax(logits, dim=-1)
    phonemes = proc.batch_decode(ids)[0]
    phonemes = cmu_to_ipa(phonemes)

    return phonemes.strip(), time.time() - start

def run_timit(wav):
    start = time.time()
    # Read and process the input
    inputs = timit_proc(wav, sampling_rate=16_000, return_tensors="pt", padding=True)
    inputs = inputs.to(device)
    
    # Forward pass
    with torch.no_grad():
        logits = timit_model(inputs.input_values, attention_mask=inputs.attention_mask).logits
    
    # Decode id into string
    predicted_ids = torch.argmax(logits, axis=-1)      
    phonemes = timit_proc.batch_decode(predicted_ids)
    phonemes = "".join(phonemes)
    
    return phonemes.strip(), time.time() - start


def run_gruut(wav):
    start = time.time()

    # Preprocess waveform → model input
    inputs = gruut_processor(
        wav, 
        sampling_rate=16000, 
        return_tensors="pt", 
        padding=True
    ).to(device)

    # Forward pass
    with torch.no_grad():
        logits = gruut_model(**inputs).logits

    # Greedy decode → IPA phonemes
    pred_ids = torch.argmax(logits, dim=-1)
    phonemes = gruut_processor.batch_decode(pred_ids)[0]
    phonemes = "".join(phonemes)

    return phonemes.strip(), time.time() - start
    
def run_wavlm_large_phoneme(wav):
    start = time.time()

    # Preprocess waveform → model input
    inputs = wavlm_proc(
        wav,
        sampling_rate=16000,
        return_tensors="pt",
        padding=True
    ).to(device)

    input_values = inputs.input_values
    attention_mask = inputs.get("attention_mask", None)

    # Forward pass
    with torch.no_grad():
        logits = wavlm_model(input_values, attention_mask=attention_mask).logits

    # Greedy decode → phoneme tokens
    pred_ids = torch.argmax(logits, dim=-1)
    phonemes = wavlm_proc.batch_decode(pred_ids)[0]
    phonemes = "".join(phonemes)
    return phonemes.strip(), time.time() - start