File size: 22,185 Bytes
71f5363
7d4ee71
 
 
 
71f5363
7d4ee71
6571814
 
 
 
 
 
ec6ec95
fe9c804
 
71f5363
63c5b22
 
 
9c01f36
 
8c4bfb2
695bf10
7d4ee71
 
 
 
 
8c4bfb2
 
 
 
 
 
 
 
 
 
a2cff3a
 
8c4bfb2
 
 
 
79640f8
ce44510
028ba65
 
a2cff3a
 
6571814
 
 
8c4bfb2
 
 
 
 
028ba65
7d4ee71
 
8c4bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebda337
8c4bfb2
 
 
 
9c01f36
 
 
8c4bfb2
 
9c01f36
 
 
8c4bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79640f8
a2cff3a
79640f8
 
 
028ba65
8c4bfb2
 
 
028ba65
8c4bfb2
 
 
028ba65
 
65c19a1
028ba65
 
 
 
 
 
 
 
 
 
 
79640f8
028ba65
79640f8
 
29a13d1
79640f8
 
028ba65
79640f8
8c4bfb2
 
 
 
 
 
 
 
 
e6f4251
 
8c4bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce44510
 
028ba65
79640f8
 
7d4ee71
 
 
79640f8
028ba65
7d4ee71
79640f8
 
 
 
 
78ef85d
79640f8
 
 
 
 
29a13d1
 
8c4bfb2
79640f8
 
7d4ee71
79640f8
 
7d4ee71
 
 
79640f8
 
 
 
 
8c4bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e525699
9c01f36
8c4bfb2
9c01f36
52a0034
 
 
8c4bfb2
52a0034
 
 
 
8c4bfb2
9c01f36
8c4bfb2
 
8979d0e
 
9c01f36
 
 
 
 
79640f8
028ba65
9cbc39c
b5c1d6f
 
028ba65
8c4bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b519f
 
8c4bfb2
 
 
 
 
 
 
 
 
 
 
 
26b519f
028ba65
8c4bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
884ddb3
 
8c4bfb2
884ddb3
8c4bfb2
884ddb3
 
 
 
 
 
 
 
8c4bfb2
884ddb3
 
 
8c4bfb2
884ddb3
 
7d4ee71
99c1461
7d4ee71
79640f8
a2fda4d
 
 
 
028ba65
79640f8
7d4ee71
 
65c19a1
8c5a92c
1618f97
79640f8
a2fda4d
8c4bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b519f
a2fda4d
8c4bfb2
 
79640f8
fee7cbb
8c4bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc842fe
79640f8
05eb5ed
028ba65
8c4bfb2
 
 
 
 
9c01f36
8c4bfb2
 
99c1461
8c4bfb2
 
 
79640f8
8c4bfb2
028ba65
231da4a
79640f8
 
 
028ba65
79640f8
 
 
26b519f
79640f8
26b519f
b001fe7
9c01f36
8c4bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c01f36
 
 
 
8c4bfb2
9c01f36
8c4bfb2
 
9c01f36
 
 
 
 
8c4bfb2
9c01f36
99c1461
9c01f36
 
 
 
99c1461
9c01f36
121ad29
 
 
 
b2cff6a
 
2787953
c09ff4c
 
121ad29
8c4bfb2
 
 
 
 
121ad29
 
b623bee
 
b5c1d6f
121ad29
8c4bfb2
884ddb3
dca85e2
884ddb3
 
 
 
028ba65
 
26b519f
 
 
8c4bfb2
 
 
884ddb3
 
 
028ba65
8c4bfb2
 
 
 
 
26b519f
9c01f36
26b519f
9c01f36
 
 
 
26b519f
028ba65
fd2fd4d
028ba65
fd2fd4d
028ba65
26b519f
7d4ee71
26b519f
8c4bfb2
 
 
 
 
 
 
 
 
 
 
 
028ba65
695bf10
ce44510
 
67e28e9
99c1461
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import gradio as gr
import numpy as np
import random
import torch
import spaces

from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3

import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

from PIL import Image
import os
import gradio as gr
from gradio_client import Client, handle_file
import tempfile
from typing import Optional, Tuple, Any


# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = QwenImageEditPlusPipeline.from_pretrained(
    "Qwen/Qwen-Image-Edit-2509",
    transformer=QwenImageTransformer2DModel.from_pretrained(
        "linoyts/Qwen-Image-Edit-Rapid-AIO",
        subfolder='transformer',
        torch_dtype=dtype,
        device_map='cuda'
    ),
    torch_dtype=dtype
).to(device)

pipe.load_lora_weights(
    "dx8152/Qwen-Edit-2509-Multiple-angles",
    weight_name="镜头转换.safetensors",
    adapter_name="angles"
)


pipe.set_adapters(["angles"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
pipe.unload_lora_weights()

pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())

optimize_pipeline_(
    pipe,
    image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))],
    prompt="prompt"
)

MAX_SEED = np.iinfo(np.int32).max


def _generate_video_segment(
    input_image_path: str,
    output_image_path: str,
    prompt: str,
    request: gr.Request
) -> str:
    """
    Generate a single video segment between two frames by calling an external
    Wan 2.2 image-to-video service hosted on Hugging Face Spaces.

    This helper function is used internally when the user asks to create
    a video between the input and output images.

    Args:
        input_image_path (str):
            Path to the starting frame image on disk.
        output_image_path (str):
            Path to the ending frame image on disk.
        prompt (str):
            Text prompt describing the camera movement / transition.
        request (gr.Request):
            Gradio request object, used here to forward the `x-ip-token`
            header to the downstream Space for authentication/rate limiting.

    Returns:
        str:
            A string returned by the external service, usually a URL or path
            to the generated video.
    """
    x_ip_token = request.headers['x-ip-token']
    video_client = Client(
        "multimodalart/wan-2-2-first-last-frame",
        headers={"x-ip-token": x_ip_token}
    )
    result = video_client.predict(
        start_image_pil=handle_file(input_image_path),
        end_image_pil=handle_file(output_image_path),
        prompt=prompt,
        api_name="/generate_video",
    )
    return result[0]["video"]


def build_camera_prompt(
    rotate_deg: float = 0.0,
    move_forward: float = 0.0,
    vertical_tilt: float = 0.0,
    wideangle: bool = False
) -> str:
    """
    Build a camera movement prompt based on the chosen controls.

    This converts the provided control values into a prompt instruction with the corresponding trigger words for the multiple-angles LoRA.

    Args:
        rotate_deg (float, optional):
            Horizontal rotation in degrees. Positive values rotate left,
            negative values rotate right. Defaults to 0.0.
        move_forward (float, optional):
            Forward movement / zoom factor. Larger values imply moving the
            camera closer or into a close-up. Defaults to 0.0.
        vertical_tilt (float, optional):
            Vertical angle of the camera:
            - Negative ≈ bird's-eye view
            - Positive ≈ worm's-eye view
            Defaults to 0.0.
        wideangle (bool, optional):
            Whether to switch to a wide-angle lens style. Defaults to False.

    Returns:
        str:
            A text prompt describing the camera motion. If no controls are
            active, returns `"no camera movement"`.
    """
    prompt_parts = []

    # Rotation
    if rotate_deg != 0:
        direction = "left" if rotate_deg > 0 else "right"
        if direction == "left":
            prompt_parts.append(
                f"将镜头向左旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the left."
            )
        else:
            prompt_parts.append(
                f"将镜头向右旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the right."
            )

    # Move forward / close-up
    if move_forward > 5:
        prompt_parts.append("将镜头转为特写镜头 Turn the camera to a close-up.")
    elif move_forward >= 1:
        prompt_parts.append("将镜头向前移动 Move the camera forward.")

    # Vertical tilt
    if vertical_tilt <= -1:
        prompt_parts.append("将相机转向鸟瞰视角 Turn the camera to a bird's-eye view.")
    elif vertical_tilt >= 1:
        prompt_parts.append("将相机切换到仰视视角 Turn the camera to a worm's-eye view.")

    # Lens option
    if wideangle:
        prompt_parts.append(" 将镜头转为广角镜头 Turn the camera to a wide-angle lens.")

    final_prompt = " ".join(prompt_parts).strip()
    return final_prompt if final_prompt else "no camera movement"


@spaces.GPU
def infer_camera_edit(
    image: Optional[Image.Image] = None,
    rotate_deg: float = 0.0,
    move_forward: float = 0.0,
    vertical_tilt: float = 0.0,
    wideangle: bool = False,
    seed: int = 0,
    randomize_seed: bool = True,
    true_guidance_scale: float = 1.0,
    num_inference_steps: int = 4,
    height: Optional[int] = None,
    width: Optional[int] = None,
    prev_output: Optional[Image.Image] = None,
) -> Tuple[Image.Image, int, str]:
    """
    Edit the camera angles/view of an image with Qwen Image Edit 2509 and dx8152's Qwen-Edit-2509-Multiple-angles LoRA.

    Applies a camera-style transformation (rotation, zoom, tilt, lens)
    to an input image.

    Args:
        image (PIL.Image.Image | None, optional):
            Input image to edit. If `None`, the function will instead try to
            use `prev_output`. At least one of `image` or `prev_output` must
            be available. Defaults to None.
        rotate_deg (float, optional):
            Horizontal rotation in degrees (-90, -45, 0, 45, 90). Positive values rotate
            to the left, negative to the right. Defaults to 0.0.
        move_forward (float, optional):
            Forward movement / zoom factor (0, 5, 10). Higher values move the
            camera closer; values >5 switch to a close-up style. Defaults to 0.0.
        vertical_tilt (float, optional):
            Vertical tilt (-1 to 1). -1 ≈ bird's-eye view, +1 ≈ worm's-eye view.
            Defaults to 0.0.
        wideangle (bool, optional):
            Whether to use a wide-angle lens style. Defaults to False.
        seed (int, optional):
            Random seed for the generation. Ignored if `randomize_seed=True`.
            Defaults to 0.
        randomize_seed (bool, optional):
            If True, a random seed (0..MAX_SEED) is chosen per call.
            Defaults to True.
        true_guidance_scale (float, optional):
            CFG / guidance scale controlling prompt adherence.
            Defaults to 1.0 since the demo is using a distilled transformer for faster inference.
        num_inference_steps (int, optional):
            Number of inference steps. Defaults to 4.
        height (int, optional):
            Output image height. Must typically be a multiple of 8.
            If set to 0, the model will infer a size. Defaults to 1024 if none is provided.
        width (int, optional):
            Output image width. Must typically be a multiple of 8.
            If set to 0, the model will infer a size. Defaults to 1024 if none is provided.
        prev_output (PIL.Image.Image | None, optional):
            Previous output image to use as input when no new image is uploaded.
            Defaults to None.

    Returns:
        Tuple[PIL.Image.Image, int, str]:
            - The edited output image.
            - The actual seed used for generation.
            - The constructed camera prompt string.
    """
    progress = gr.Progress(track_tqdm=True)
    
    prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle)
    print(f"Generated Prompt: {prompt}")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)

    # Choose input image (prefer uploaded, else last output)
    pil_images = []
    if image is not None:
        if isinstance(image, Image.Image):
            pil_images.append(image.convert("RGB"))
        elif hasattr(image, "name"):
            pil_images.append(Image.open(image.name).convert("RGB"))
    elif prev_output:
        pil_images.append(prev_output.convert("RGB"))

    if len(pil_images) == 0:
        raise gr.Error("Please upload an image first.")

    if prompt == "no camera movement":
        return image, seed, prompt

    result = pipe(
        image=pil_images,
        prompt=prompt,
        height=height if height != 0 else None,
        width=width if width != 0 else None,
        num_inference_steps=num_inference_steps,
        generator=generator,
        true_cfg_scale=true_guidance_scale,
        num_images_per_prompt=1,
    ).images[0]

    return result, seed, prompt


def create_video_between_images(
    input_image: Optional[Image.Image],
    output_image: Optional[np.ndarray],
    prompt: str,
    request: gr.Request
) -> str:
    """
    Create a short transition video between the input and output images via the 
    Wan 2.2 first-last-frame Space.

    Args:
        input_image (PIL.Image.Image | None):
            Starting frame image (the original / previous view).
        output_image (numpy.ndarray | None):
            Ending frame image - the output image with the the edited camera angles.
        prompt (str):
            The camera movement prompt used to describe the transition.
        request (gr.Request):
            Gradio request object, used to forward the `x-ip-token` header
            to the video generation app.

    Returns:
        str:
            a path pointing to the generated video.

    Raises:
        gr.Error:
            If either image is missing or if the video generation fails.
    """
    if input_image is None or output_image is None:
        raise gr.Error("Both input and output images are required to create a video.")

    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
            input_image.save(tmp.name)
            input_image_path = tmp.name

        output_pil = Image.fromarray(output_image.astype('uint8'))
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
            output_pil.save(tmp.name)
            output_image_path = tmp.name

        video_path = _generate_video_segment(
            input_image_path,
            output_image_path,
            prompt if prompt else "Camera movement transformation",
            request
        )
        return video_path
    except Exception as e:
        raise gr.Error(f"Video generation failed: {e}")


# --- UI ---
css = '''#col-container { max-width: 800px; margin: 0 auto; }
.dark .progress-text{color: white !important}
#examples{max-width: 800px; margin: 0 auto; }'''


def reset_all() -> list:
    """
    Reset all camera control knobs and flags to their default values.

    This is used by the "Reset" button to set:
    - rotate_deg = 0
    - move_forward = 0
    - vertical_tilt = 0
    - wideangle = False
    - is_reset = True

    Returns:
        list:
            A list of values matching the order of the reset outputs:
            [rotate_deg, move_forward, vertical_tilt, wideangle, is_reset, True]
    """
    return [0, 0, 0, 0, False, True]


def end_reset() -> bool:
    """
    Mark the end of a reset cycle.

    This helper is chained after `reset_all` to set the internal
    `is_reset` flag back to False, so that live inference can resume.

    Returns:
        bool:
            Always returns False.
    """
    return False


def update_dimensions_on_upload(
    image: Optional[Image.Image]
) -> Tuple[int, int]:
    """
    Compute recommended (width, height) for the output resolution when an
    image is uploaded while preserveing the aspect ratio.

    Args:
        image (PIL.Image.Image | None):
            The uploaded image. If `None`, defaults to (1024, 1024).

    Returns:
        Tuple[int, int]:
            The new (width, height).
    """
    if image is None:
        return 1024, 1024

    original_width, original_height = image.size

    if original_width > original_height:
        new_width = 1024
        aspect_ratio = original_height / original_width
        new_height = int(new_width * aspect_ratio)
    else:
        new_height = 1024
        aspect_ratio = original_width / original_height
        new_width = int(new_height * aspect_ratio)

    # Ensure dimensions are multiples of 8
    new_width = (new_width // 8) * 8
    new_height = (new_height // 8) * 8

    return new_width, new_height


with gr.Blocks() as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## 🎬 Qwen Image Edit — Camera Angle Control")
        gr.Markdown("""
            Qwen Image Edit 2509 for Camera Control ✨ 
            Using [dx8152's Qwen-Edit-2509-Multiple-angles LoRA](https://huggingface.co/dx8152/Qwen-Edit-2509-Multiple-angles) and [Phr00t/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO/tree/main) for 4-step inference 💨
            """
        )

        with gr.Row():
            with gr.Column():
                image = gr.Image(label="Input Image", type="pil")
                prev_output = gr.Image(value=None, visible=False)
                is_reset = gr.Checkbox(value=False, visible=False)

                with gr.Tab("Camera Controls"):
                    rotate_deg = gr.Slider(
                        label="Rotate Right-Left (degrees °)",
                        minimum=-90,
                        maximum=90,
                        step=45,
                        value=0
                    )
                    move_forward = gr.Slider(
                        label="Move Forward → Close-Up",
                        minimum=0,
                        maximum=10,
                        step=5,
                        value=0
                    )
                    vertical_tilt = gr.Slider(
                        label="Vertical Angle (Bird ↔ Worm)",
                        minimum=-1,
                        maximum=1,
                        step=1,
                        value=0
                    )
                    wideangle = gr.Checkbox(label="Wide-Angle Lens", value=False)
                with gr.Row():
                    reset_btn = gr.Button("Reset")
                    run_btn = gr.Button("Generate", variant="primary")

                with gr.Accordion("Advanced Settings", open=False):
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0
                    )
                    randomize_seed = gr.Checkbox(
                        label="Randomize Seed",
                        value=True
                    )
                    true_guidance_scale = gr.Slider(
                        label="True Guidance Scale",
                        minimum=1.0,
                        maximum=10.0,
                        step=0.1,
                        value=1.0
                    )
                    num_inference_steps = gr.Slider(
                        label="Inference Steps",
                        minimum=1,
                        maximum=40,
                        step=1,
                        value=4
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=2048,
                        step=8,
                        value=1024
                    )
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=2048,
                        step=8,
                        value=1024
                    )

            with gr.Column():
                result = gr.Image(label="Output Image", interactive=False)
                prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False)
                create_video_button = gr.Button(
                    "🎥 Create Video Between Images",
                    variant="secondary",
                    visible=False
                )
                with gr.Group(visible=False) as video_group:
                    video_output = gr.Video(
                        label="Generated Video",
                        buttons=["download"],
                        autoplay=True
                    )

    inputs = [
        image, rotate_deg, move_forward,
        vertical_tilt, wideangle,
        seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
    ]
    outputs = [result, seed, prompt_preview]

    # Reset behavior
    reset_btn.click(
        fn=reset_all,
        inputs=None,
        outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
        queue=False
    ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)

    # Manual generation with video button visibility control
    def infer_and_show_video_button(*args: Any):
        """
        Wrapper around `infer_camera_edit` that also controls the visibility
        of the 'Create Video Between Images' button.

        The first argument in `args` is expected to be the input image; if both
        input and output images are present, the video button is shown.

        Args:
            *args:
                Positional arguments forwarded directly to `infer_camera_edit`.

        Returns:
            tuple:
                (output_image, seed, prompt, video_button_visibility_update)
        """
        result_img, result_seed, result_prompt = infer_camera_edit(*args)
        # Show video button if we have both input and output images
        show_button = args[0] is not None and result_img is not None
        return result_img, result_seed, result_prompt, gr.update(visible=show_button)

    run_event = run_btn.click(
        fn=infer_and_show_video_button,
        inputs=inputs,
        outputs=outputs + [create_video_button]
    )

    # Video creation
    create_video_button.click(
        fn=lambda: gr.update(visible=True),
        outputs=[video_group],
        api_visibility="private"
    ).then(
        fn=create_video_between_images,
        inputs=[image, result, prompt_preview],
        outputs=[video_output],
        api_visibility="private"
    )

    # Examples
    gr.Examples(
        examples=[
            ["tool_of_the_sea.png", 90, 0, 0, False, 0, True, 1.0, 4, 568, 1024],
            ["monkey.jpg", -90, 0, 0, False, 0, True, 1.0, 4, 704, 1024],
            ["metropolis.jpg", 0, 0, -1, False, 0, True, 1.0, 4, 816, 1024],
            ["disaster_girl.jpg", -45, 0, 1, False, 0, True, 1.0, 4, 768, 1024],
            ["grumpy.png", 90, 0, 1, False, 0, True, 1.0, 4, 576, 1024]
        ],
        inputs=[
            image, rotate_deg, move_forward,
            vertical_tilt, wideangle,
            seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width
        ],
        outputs=outputs,
        fn=infer_camera_edit,
        cache_examples=True,
        cache_mode="lazy",
        elem_id="examples"
    )

    # Image upload triggers dimension update and control reset
    image.upload(
        fn=update_dimensions_on_upload,
        inputs=[image],
        outputs=[width, height]
    ).then(
        fn=reset_all,
        inputs=None,
        outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
        queue=False
    ).then(
        fn=end_reset,
        inputs=None,
        outputs=[is_reset],
        queue=False
    )

    # Live updates
    def maybe_infer(
        is_reset: bool,
        progress: gr.Progress = gr.Progress(track_tqdm=True),
        *args: Any
    ):
        if is_reset:
            return gr.update(), gr.update(), gr.update(), gr.update()
        else:
            result_img, result_seed, result_prompt = infer_camera_edit(*args)
            # Show video button if we have both input and output
            show_button = args[0] is not None and result_img is not None
            return result_img, result_seed, result_prompt, gr.update(visible=show_button)

    control_inputs = [
        image, rotate_deg, move_forward,
        vertical_tilt, wideangle,
        seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
    ]
    control_inputs_with_flag = [is_reset] + control_inputs

    for control in [rotate_deg, move_forward, vertical_tilt]:
        control.release(
            fn=maybe_infer,
            inputs=control_inputs_with_flag,
            outputs=outputs + [create_video_button]
        )

    wideangle.input(
        fn=maybe_infer,
        inputs=control_inputs_with_flag,
        outputs=outputs + [create_video_button]
    )

    run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])

    gr.api(infer_camera_edit, api_name="infer_edit_camera_angles")
    gr.api(create_video_between_images, api_name="create_video_between_images")

demo.launch(mcp_server=True, theme=gr.themes.Citrus(), css=css, footer_links=["api", "gradio", "settings"])