Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,185 Bytes
71f5363 7d4ee71 71f5363 7d4ee71 6571814 ec6ec95 fe9c804 71f5363 63c5b22 9c01f36 8c4bfb2 695bf10 7d4ee71 8c4bfb2 a2cff3a 8c4bfb2 79640f8 ce44510 028ba65 a2cff3a 6571814 8c4bfb2 028ba65 7d4ee71 8c4bfb2 ebda337 8c4bfb2 9c01f36 8c4bfb2 9c01f36 8c4bfb2 79640f8 a2cff3a 79640f8 028ba65 8c4bfb2 028ba65 8c4bfb2 028ba65 65c19a1 028ba65 79640f8 028ba65 79640f8 29a13d1 79640f8 028ba65 79640f8 8c4bfb2 e6f4251 8c4bfb2 ce44510 028ba65 79640f8 7d4ee71 79640f8 028ba65 7d4ee71 79640f8 78ef85d 79640f8 29a13d1 8c4bfb2 79640f8 7d4ee71 79640f8 7d4ee71 79640f8 8c4bfb2 e525699 9c01f36 8c4bfb2 9c01f36 52a0034 8c4bfb2 52a0034 8c4bfb2 9c01f36 8c4bfb2 8979d0e 9c01f36 79640f8 028ba65 9cbc39c b5c1d6f 028ba65 8c4bfb2 26b519f 8c4bfb2 26b519f 028ba65 8c4bfb2 884ddb3 8c4bfb2 884ddb3 8c4bfb2 884ddb3 8c4bfb2 884ddb3 8c4bfb2 884ddb3 7d4ee71 99c1461 7d4ee71 79640f8 a2fda4d 028ba65 79640f8 7d4ee71 65c19a1 8c5a92c 1618f97 79640f8 a2fda4d 8c4bfb2 26b519f a2fda4d 8c4bfb2 79640f8 fee7cbb 8c4bfb2 cc842fe 79640f8 05eb5ed 028ba65 8c4bfb2 9c01f36 8c4bfb2 99c1461 8c4bfb2 79640f8 8c4bfb2 028ba65 231da4a 79640f8 028ba65 79640f8 26b519f 79640f8 26b519f b001fe7 9c01f36 8c4bfb2 9c01f36 8c4bfb2 9c01f36 8c4bfb2 9c01f36 8c4bfb2 9c01f36 99c1461 9c01f36 99c1461 9c01f36 121ad29 b2cff6a 2787953 c09ff4c 121ad29 8c4bfb2 121ad29 b623bee b5c1d6f 121ad29 8c4bfb2 884ddb3 dca85e2 884ddb3 028ba65 26b519f 8c4bfb2 884ddb3 028ba65 8c4bfb2 26b519f 9c01f36 26b519f 9c01f36 26b519f 028ba65 fd2fd4d 028ba65 fd2fd4d 028ba65 26b519f 7d4ee71 26b519f 8c4bfb2 028ba65 695bf10 ce44510 67e28e9 99c1461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
import os
import gradio as gr
from gradio_client import Client, handle_file
import tempfile
from typing import Optional, Tuple, Any
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=QwenImageTransformer2DModel.from_pretrained(
"linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'
),
torch_dtype=dtype
).to(device)
pipe.load_lora_weights(
"dx8152/Qwen-Edit-2509-Multiple-angles",
weight_name="镜头转换.safetensors",
adapter_name="angles"
)
pipe.set_adapters(["angles"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(
pipe,
image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))],
prompt="prompt"
)
MAX_SEED = np.iinfo(np.int32).max
def _generate_video_segment(
input_image_path: str,
output_image_path: str,
prompt: str,
request: gr.Request
) -> str:
"""
Generate a single video segment between two frames by calling an external
Wan 2.2 image-to-video service hosted on Hugging Face Spaces.
This helper function is used internally when the user asks to create
a video between the input and output images.
Args:
input_image_path (str):
Path to the starting frame image on disk.
output_image_path (str):
Path to the ending frame image on disk.
prompt (str):
Text prompt describing the camera movement / transition.
request (gr.Request):
Gradio request object, used here to forward the `x-ip-token`
header to the downstream Space for authentication/rate limiting.
Returns:
str:
A string returned by the external service, usually a URL or path
to the generated video.
"""
x_ip_token = request.headers['x-ip-token']
video_client = Client(
"multimodalart/wan-2-2-first-last-frame",
headers={"x-ip-token": x_ip_token}
)
result = video_client.predict(
start_image_pil=handle_file(input_image_path),
end_image_pil=handle_file(output_image_path),
prompt=prompt,
api_name="/generate_video",
)
return result[0]["video"]
def build_camera_prompt(
rotate_deg: float = 0.0,
move_forward: float = 0.0,
vertical_tilt: float = 0.0,
wideangle: bool = False
) -> str:
"""
Build a camera movement prompt based on the chosen controls.
This converts the provided control values into a prompt instruction with the corresponding trigger words for the multiple-angles LoRA.
Args:
rotate_deg (float, optional):
Horizontal rotation in degrees. Positive values rotate left,
negative values rotate right. Defaults to 0.0.
move_forward (float, optional):
Forward movement / zoom factor. Larger values imply moving the
camera closer or into a close-up. Defaults to 0.0.
vertical_tilt (float, optional):
Vertical angle of the camera:
- Negative ≈ bird's-eye view
- Positive ≈ worm's-eye view
Defaults to 0.0.
wideangle (bool, optional):
Whether to switch to a wide-angle lens style. Defaults to False.
Returns:
str:
A text prompt describing the camera motion. If no controls are
active, returns `"no camera movement"`.
"""
prompt_parts = []
# Rotation
if rotate_deg != 0:
direction = "left" if rotate_deg > 0 else "right"
if direction == "left":
prompt_parts.append(
f"将镜头向左旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the left."
)
else:
prompt_parts.append(
f"将镜头向右旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the right."
)
# Move forward / close-up
if move_forward > 5:
prompt_parts.append("将镜头转为特写镜头 Turn the camera to a close-up.")
elif move_forward >= 1:
prompt_parts.append("将镜头向前移动 Move the camera forward.")
# Vertical tilt
if vertical_tilt <= -1:
prompt_parts.append("将相机转向鸟瞰视角 Turn the camera to a bird's-eye view.")
elif vertical_tilt >= 1:
prompt_parts.append("将相机切换到仰视视角 Turn the camera to a worm's-eye view.")
# Lens option
if wideangle:
prompt_parts.append(" 将镜头转为广角镜头 Turn the camera to a wide-angle lens.")
final_prompt = " ".join(prompt_parts).strip()
return final_prompt if final_prompt else "no camera movement"
@spaces.GPU
def infer_camera_edit(
image: Optional[Image.Image] = None,
rotate_deg: float = 0.0,
move_forward: float = 0.0,
vertical_tilt: float = 0.0,
wideangle: bool = False,
seed: int = 0,
randomize_seed: bool = True,
true_guidance_scale: float = 1.0,
num_inference_steps: int = 4,
height: Optional[int] = None,
width: Optional[int] = None,
prev_output: Optional[Image.Image] = None,
) -> Tuple[Image.Image, int, str]:
"""
Edit the camera angles/view of an image with Qwen Image Edit 2509 and dx8152's Qwen-Edit-2509-Multiple-angles LoRA.
Applies a camera-style transformation (rotation, zoom, tilt, lens)
to an input image.
Args:
image (PIL.Image.Image | None, optional):
Input image to edit. If `None`, the function will instead try to
use `prev_output`. At least one of `image` or `prev_output` must
be available. Defaults to None.
rotate_deg (float, optional):
Horizontal rotation in degrees (-90, -45, 0, 45, 90). Positive values rotate
to the left, negative to the right. Defaults to 0.0.
move_forward (float, optional):
Forward movement / zoom factor (0, 5, 10). Higher values move the
camera closer; values >5 switch to a close-up style. Defaults to 0.0.
vertical_tilt (float, optional):
Vertical tilt (-1 to 1). -1 ≈ bird's-eye view, +1 ≈ worm's-eye view.
Defaults to 0.0.
wideangle (bool, optional):
Whether to use a wide-angle lens style. Defaults to False.
seed (int, optional):
Random seed for the generation. Ignored if `randomize_seed=True`.
Defaults to 0.
randomize_seed (bool, optional):
If True, a random seed (0..MAX_SEED) is chosen per call.
Defaults to True.
true_guidance_scale (float, optional):
CFG / guidance scale controlling prompt adherence.
Defaults to 1.0 since the demo is using a distilled transformer for faster inference.
num_inference_steps (int, optional):
Number of inference steps. Defaults to 4.
height (int, optional):
Output image height. Must typically be a multiple of 8.
If set to 0, the model will infer a size. Defaults to 1024 if none is provided.
width (int, optional):
Output image width. Must typically be a multiple of 8.
If set to 0, the model will infer a size. Defaults to 1024 if none is provided.
prev_output (PIL.Image.Image | None, optional):
Previous output image to use as input when no new image is uploaded.
Defaults to None.
Returns:
Tuple[PIL.Image.Image, int, str]:
- The edited output image.
- The actual seed used for generation.
- The constructed camera prompt string.
"""
progress = gr.Progress(track_tqdm=True)
prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle)
print(f"Generated Prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Choose input image (prefer uploaded, else last output)
pil_images = []
if image is not None:
if isinstance(image, Image.Image):
pil_images.append(image.convert("RGB"))
elif hasattr(image, "name"):
pil_images.append(Image.open(image.name).convert("RGB"))
elif prev_output:
pil_images.append(prev_output.convert("RGB"))
if len(pil_images) == 0:
raise gr.Error("Please upload an image first.")
if prompt == "no camera movement":
return image, seed, prompt
result = pipe(
image=pil_images,
prompt=prompt,
height=height if height != 0 else None,
width=width if width != 0 else None,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images[0]
return result, seed, prompt
def create_video_between_images(
input_image: Optional[Image.Image],
output_image: Optional[np.ndarray],
prompt: str,
request: gr.Request
) -> str:
"""
Create a short transition video between the input and output images via the
Wan 2.2 first-last-frame Space.
Args:
input_image (PIL.Image.Image | None):
Starting frame image (the original / previous view).
output_image (numpy.ndarray | None):
Ending frame image - the output image with the the edited camera angles.
prompt (str):
The camera movement prompt used to describe the transition.
request (gr.Request):
Gradio request object, used to forward the `x-ip-token` header
to the video generation app.
Returns:
str:
a path pointing to the generated video.
Raises:
gr.Error:
If either image is missing or if the video generation fails.
"""
if input_image is None or output_image is None:
raise gr.Error("Both input and output images are required to create a video.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
input_image.save(tmp.name)
input_image_path = tmp.name
output_pil = Image.fromarray(output_image.astype('uint8'))
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
output_pil.save(tmp.name)
output_image_path = tmp.name
video_path = _generate_video_segment(
input_image_path,
output_image_path,
prompt if prompt else "Camera movement transformation",
request
)
return video_path
except Exception as e:
raise gr.Error(f"Video generation failed: {e}")
# --- UI ---
css = '''#col-container { max-width: 800px; margin: 0 auto; }
.dark .progress-text{color: white !important}
#examples{max-width: 800px; margin: 0 auto; }'''
def reset_all() -> list:
"""
Reset all camera control knobs and flags to their default values.
This is used by the "Reset" button to set:
- rotate_deg = 0
- move_forward = 0
- vertical_tilt = 0
- wideangle = False
- is_reset = True
Returns:
list:
A list of values matching the order of the reset outputs:
[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset, True]
"""
return [0, 0, 0, 0, False, True]
def end_reset() -> bool:
"""
Mark the end of a reset cycle.
This helper is chained after `reset_all` to set the internal
`is_reset` flag back to False, so that live inference can resume.
Returns:
bool:
Always returns False.
"""
return False
def update_dimensions_on_upload(
image: Optional[Image.Image]
) -> Tuple[int, int]:
"""
Compute recommended (width, height) for the output resolution when an
image is uploaded while preserveing the aspect ratio.
Args:
image (PIL.Image.Image | None):
The uploaded image. If `None`, defaults to (1024, 1024).
Returns:
Tuple[int, int]:
The new (width, height).
"""
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## 🎬 Qwen Image Edit — Camera Angle Control")
gr.Markdown("""
Qwen Image Edit 2509 for Camera Control ✨
Using [dx8152's Qwen-Edit-2509-Multiple-angles LoRA](https://huggingface.co/dx8152/Qwen-Edit-2509-Multiple-angles) and [Phr00t/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO/tree/main) for 4-step inference 💨
"""
)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input Image", type="pil")
prev_output = gr.Image(value=None, visible=False)
is_reset = gr.Checkbox(value=False, visible=False)
with gr.Tab("Camera Controls"):
rotate_deg = gr.Slider(
label="Rotate Right-Left (degrees °)",
minimum=-90,
maximum=90,
step=45,
value=0
)
move_forward = gr.Slider(
label="Move Forward → Close-Up",
minimum=0,
maximum=10,
step=5,
value=0
)
vertical_tilt = gr.Slider(
label="Vertical Angle (Bird ↔ Worm)",
minimum=-1,
maximum=1,
step=1,
value=0
)
wideangle = gr.Checkbox(label="Wide-Angle Lens", value=False)
with gr.Row():
reset_btn = gr.Button("Reset")
run_btn = gr.Button("Generate", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0
)
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=True
)
true_guidance_scale = gr.Slider(
label="True Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=40,
step=1,
value=4
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=8,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=8,
value=1024
)
with gr.Column():
result = gr.Image(label="Output Image", interactive=False)
prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False)
create_video_button = gr.Button(
"🎥 Create Video Between Images",
variant="secondary",
visible=False
)
with gr.Group(visible=False) as video_group:
video_output = gr.Video(
label="Generated Video",
buttons=["download"],
autoplay=True
)
inputs = [
image, rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
]
outputs = [result, seed, prompt_preview]
# Reset behavior
reset_btn.click(
fn=reset_all,
inputs=None,
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
queue=False
).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)
# Manual generation with video button visibility control
def infer_and_show_video_button(*args: Any):
"""
Wrapper around `infer_camera_edit` that also controls the visibility
of the 'Create Video Between Images' button.
The first argument in `args` is expected to be the input image; if both
input and output images are present, the video button is shown.
Args:
*args:
Positional arguments forwarded directly to `infer_camera_edit`.
Returns:
tuple:
(output_image, seed, prompt, video_button_visibility_update)
"""
result_img, result_seed, result_prompt = infer_camera_edit(*args)
# Show video button if we have both input and output images
show_button = args[0] is not None and result_img is not None
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
run_event = run_btn.click(
fn=infer_and_show_video_button,
inputs=inputs,
outputs=outputs + [create_video_button]
)
# Video creation
create_video_button.click(
fn=lambda: gr.update(visible=True),
outputs=[video_group],
api_visibility="private"
).then(
fn=create_video_between_images,
inputs=[image, result, prompt_preview],
outputs=[video_output],
api_visibility="private"
)
# Examples
gr.Examples(
examples=[
["tool_of_the_sea.png", 90, 0, 0, False, 0, True, 1.0, 4, 568, 1024],
["monkey.jpg", -90, 0, 0, False, 0, True, 1.0, 4, 704, 1024],
["metropolis.jpg", 0, 0, -1, False, 0, True, 1.0, 4, 816, 1024],
["disaster_girl.jpg", -45, 0, 1, False, 0, True, 1.0, 4, 768, 1024],
["grumpy.png", 90, 0, 1, False, 0, True, 1.0, 4, 576, 1024]
],
inputs=[
image, rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width
],
outputs=outputs,
fn=infer_camera_edit,
cache_examples=True,
cache_mode="lazy",
elem_id="examples"
)
# Image upload triggers dimension update and control reset
image.upload(
fn=update_dimensions_on_upload,
inputs=[image],
outputs=[width, height]
).then(
fn=reset_all,
inputs=None,
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
queue=False
).then(
fn=end_reset,
inputs=None,
outputs=[is_reset],
queue=False
)
# Live updates
def maybe_infer(
is_reset: bool,
progress: gr.Progress = gr.Progress(track_tqdm=True),
*args: Any
):
if is_reset:
return gr.update(), gr.update(), gr.update(), gr.update()
else:
result_img, result_seed, result_prompt = infer_camera_edit(*args)
# Show video button if we have both input and output
show_button = args[0] is not None and result_img is not None
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
control_inputs = [
image, rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
]
control_inputs_with_flag = [is_reset] + control_inputs
for control in [rotate_deg, move_forward, vertical_tilt]:
control.release(
fn=maybe_infer,
inputs=control_inputs_with_flag,
outputs=outputs + [create_video_button]
)
wideangle.input(
fn=maybe_infer,
inputs=control_inputs_with_flag,
outputs=outputs + [create_video_button]
)
run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])
gr.api(infer_camera_edit, api_name="infer_edit_camera_angles")
gr.api(create_video_between_images, api_name="create_video_between_images")
demo.launch(mcp_server=True, theme=gr.themes.Citrus(), css=css, footer_links=["api", "gradio", "settings"]) |