Alex-q-z
commited on
Commit
Β·
4b73981
1
Parent(s):
200e56a
[Refactor] Clean up the frontend for correct visualization and better readabilitt
Browse files- app.py +45 -28
- data/{decode_h2o_Llama3.1-8B-Instruct_LongGenBench.json β decode_H2O_Mistral-7B-v0.3_LongGenBench.json} +0 -0
- data/{decode_streamingLLM_Llama3.1-8B-Instruct_LongGenBench.json β decode_StreamingLLM_Mistral-7B-v0.3_LongGenBench.json} +0 -0
- data/{decode_vllm_Llama3.1-8B-Instruct_LongGenBench.json β decode_vLLM_Mistral-7B-v0.3_LongGenBench.json} +0 -0
- data/{prefill_cachegen_Llama3.1-8B-Instruct_NarrativeQA.json β prefill_CacheGen_Mistral-7B-v0.3_NarrativeQA.json} +1 -1
- data/{prefill_kivi_Llama3.1-8B-Instruct_NarrativeQA.json β prefill_KIVI_Mistral-7B-v0.3_NarrativeQA.json} +1 -1
- data/{prefill_vllm_Llama3.1-8B-Instruct_NarrativeQA.json β prefill_vLLM_Mistral-7B-v0.3_NarrativeQA.json} +1 -1
app.py
CHANGED
|
@@ -37,14 +37,14 @@ def filter_and_display(selected_columns, model_types, datasets, stage):
|
|
| 37 |
# Adjust aggregation based on stage
|
| 38 |
if stage == "decode":
|
| 39 |
filtered = filtered.groupby(["Method", "Model"], as_index=False).agg({
|
| 40 |
-
"Throughput (token/s)": "mean",
|
| 41 |
"Quality": "mean",
|
|
|
|
| 42 |
"Link": "first"
|
| 43 |
})
|
| 44 |
else:
|
| 45 |
filtered = filtered.groupby(["Method", "Model"], as_index=False).agg({
|
| 46 |
"Quality": "mean",
|
| 47 |
-
"TTFT": "mean",
|
| 48 |
"Link": "first"
|
| 49 |
})
|
| 50 |
|
|
@@ -55,15 +55,33 @@ def filter_and_display(selected_columns, model_types, datasets, stage):
|
|
| 55 |
def create_prefill_visualization(filtered_data):
|
| 56 |
if filtered_data.empty:
|
| 57 |
return None
|
| 58 |
-
fig = px.
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
return fig
|
| 61 |
|
| 62 |
def create_decode_visualization(filtered_data):
|
| 63 |
if filtered_data.empty:
|
| 64 |
return None
|
| 65 |
-
fig = px.
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
return fig
|
| 68 |
|
| 69 |
# Load the data from the /data folder
|
|
@@ -75,27 +93,26 @@ def create_gradio_app():
|
|
| 75 |
with gr.Blocks() as app:
|
| 76 |
with gr.Row():
|
| 77 |
gr.Markdown(
|
| 78 |
-
"""# KV Cache
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
""")
|
| 82 |
|
| 83 |
with gr.Tabs():
|
| 84 |
with gr.TabItem("KV Cache Benchmark"):
|
| 85 |
# Prefill-stage selection
|
| 86 |
with gr.Row():
|
| 87 |
-
gr.Markdown("## Prefill-
|
| 88 |
with gr.Row():
|
| 89 |
with gr.Column():
|
| 90 |
-
gr.Markdown("#### Select Columns to Display")
|
| 91 |
prefill_columns_to_display = gr.CheckboxGroup(
|
| 92 |
-
choices=["Quality", "TTFT", "Link"],
|
| 93 |
-
label="
|
| 94 |
-
value=["Quality", "TTFT"]
|
| 95 |
)
|
| 96 |
|
| 97 |
with gr.Column():
|
| 98 |
-
gr.Markdown("#### Model Types")
|
| 99 |
prefill_model_types = gr.CheckboxGroup(
|
| 100 |
choices=list(data["Model"].unique()),
|
| 101 |
label="Model Types",
|
|
@@ -103,7 +120,7 @@ This demo leaderboard allows users to explore and compare different KV cache imp
|
|
| 103 |
)
|
| 104 |
|
| 105 |
with gr.Column():
|
| 106 |
-
gr.Markdown("#### Datasets")
|
| 107 |
prefill_datasets = gr.CheckboxGroup(
|
| 108 |
choices=list(data[data["Stage"] == "prefill"]["Dataset"].unique()),
|
| 109 |
label="Datasets",
|
|
@@ -112,21 +129,21 @@ This demo leaderboard allows users to explore and compare different KV cache imp
|
|
| 112 |
|
| 113 |
# Prefill-stage compression results
|
| 114 |
with gr.Row():
|
| 115 |
-
gr.Markdown("##
|
| 116 |
|
| 117 |
-
prefill_results = gr.Dataframe(value=filter_and_display(["Quality", "TTFT"], list(data["Model"].unique()), list(data["Dataset"].unique()), "prefill"), headers=["Method", "Model", "Quality", "TTFT", "Link"])
|
| 118 |
|
| 119 |
# Prefill-stage visualization
|
| 120 |
with gr.Row():
|
| 121 |
-
gr.Markdown("###
|
| 122 |
-
prefill_plot = gr.Plot(value=create_prefill_visualization(filter_and_display(["Quality"], list(data["Model"].unique()), list(data["Dataset"].unique()), "prefill")))
|
| 123 |
|
| 124 |
# Decode-stage selection
|
| 125 |
with gr.Row():
|
| 126 |
-
gr.Markdown("## Decode-
|
| 127 |
with gr.Row():
|
| 128 |
with gr.Column():
|
| 129 |
-
gr.Markdown("#### Select Columns to Display")
|
| 130 |
decode_columns_to_display = gr.CheckboxGroup(
|
| 131 |
choices=["Throughput (token/s)", "Quality", "Link"],
|
| 132 |
label="Columns",
|
|
@@ -134,7 +151,7 @@ This demo leaderboard allows users to explore and compare different KV cache imp
|
|
| 134 |
)
|
| 135 |
|
| 136 |
with gr.Column():
|
| 137 |
-
gr.Markdown("#### Model Types")
|
| 138 |
decode_model_types = gr.CheckboxGroup(
|
| 139 |
choices=list(data["Model"].unique()),
|
| 140 |
label="Model Types",
|
|
@@ -142,7 +159,7 @@ This demo leaderboard allows users to explore and compare different KV cache imp
|
|
| 142 |
)
|
| 143 |
|
| 144 |
with gr.Column():
|
| 145 |
-
gr.Markdown("#### Datasets")
|
| 146 |
decode_datasets = gr.CheckboxGroup(
|
| 147 |
choices=list(data[data["Stage"] == "decode"]["Dataset"].unique()),
|
| 148 |
label="Datasets",
|
|
@@ -151,14 +168,14 @@ This demo leaderboard allows users to explore and compare different KV cache imp
|
|
| 151 |
|
| 152 |
# Decode-stage compression results
|
| 153 |
with gr.Row():
|
| 154 |
-
gr.Markdown("##
|
| 155 |
|
| 156 |
decode_results = gr.Dataframe(value=filter_and_display(["Throughput (token/s)", "Quality"], list(data["Model"].unique()), list(data["Dataset"].unique()), "decode"), headers=["Method", "Model", "Throughput (token/s)", "Quality", "Link"])
|
| 157 |
|
| 158 |
# Decode-stage visualization
|
| 159 |
with gr.Row():
|
| 160 |
-
gr.Markdown("###
|
| 161 |
-
decode_plot = gr.Plot(value=create_decode_visualization(filter_and_display(["Throughput (token/s)"], list(data["Model"].unique()), list(data["Dataset"].unique()), "decode")))
|
| 162 |
|
| 163 |
def auto_update_prefill(selected_columns, model_types, datasets):
|
| 164 |
if not model_types or not datasets:
|
|
|
|
| 37 |
# Adjust aggregation based on stage
|
| 38 |
if stage == "decode":
|
| 39 |
filtered = filtered.groupby(["Method", "Model"], as_index=False).agg({
|
|
|
|
| 40 |
"Quality": "mean",
|
| 41 |
+
"Throughput (token/s)": "mean",
|
| 42 |
"Link": "first"
|
| 43 |
})
|
| 44 |
else:
|
| 45 |
filtered = filtered.groupby(["Method", "Model"], as_index=False).agg({
|
| 46 |
"Quality": "mean",
|
| 47 |
+
"TTFT (s)": "mean",
|
| 48 |
"Link": "first"
|
| 49 |
})
|
| 50 |
|
|
|
|
| 55 |
def create_prefill_visualization(filtered_data):
|
| 56 |
if filtered_data.empty:
|
| 57 |
return None
|
| 58 |
+
fig = px.line(filtered_data,
|
| 59 |
+
x='TTFT (s)',
|
| 60 |
+
y='Quality',
|
| 61 |
+
color='Method',
|
| 62 |
+
title='Quality-TTFT trade-off of different methods',
|
| 63 |
+
markers=True
|
| 64 |
+
)
|
| 65 |
+
fig.update_layout(
|
| 66 |
+
xaxis=dict(range=[0.0, 5.0]),
|
| 67 |
+
yaxis=dict(range=[0.0, 40.0])
|
| 68 |
+
)
|
| 69 |
return fig
|
| 70 |
|
| 71 |
def create_decode_visualization(filtered_data):
|
| 72 |
if filtered_data.empty:
|
| 73 |
return None
|
| 74 |
+
fig = px.line(filtered_data,
|
| 75 |
+
x='Throughput (token/s)',
|
| 76 |
+
y='Quality',
|
| 77 |
+
color='Method',
|
| 78 |
+
title='Quality-throughput trade-off of different methods',
|
| 79 |
+
markers=True
|
| 80 |
+
)
|
| 81 |
+
fig.update_layout(
|
| 82 |
+
xaxis=dict(range=[0.0, 1000.0]),
|
| 83 |
+
yaxis=dict(range=[0.0, 1.0])
|
| 84 |
+
)
|
| 85 |
return fig
|
| 86 |
|
| 87 |
# Load the data from the /data folder
|
|
|
|
| 93 |
with gr.Blocks() as app:
|
| 94 |
with gr.Row():
|
| 95 |
gr.Markdown(
|
| 96 |
+
"""# KV Cache Arena
|
| 97 |
+
We invite users and developers to explore and compare various KV cache and prompt compression methods across different language models and workloads. Our platform offers interactive filtering options and real-time visualizations, enabling seamless analysis of benchmarking results.
|
| 98 |
+
""")
|
|
|
|
| 99 |
|
| 100 |
with gr.Tabs():
|
| 101 |
with gr.TabItem("KV Cache Benchmark"):
|
| 102 |
# Prefill-stage selection
|
| 103 |
with gr.Row():
|
| 104 |
+
gr.Markdown("## Prefill-Stage KV Cache Compression")
|
| 105 |
with gr.Row():
|
| 106 |
with gr.Column():
|
| 107 |
+
# gr.Markdown("#### Select Columns to Display")
|
| 108 |
prefill_columns_to_display = gr.CheckboxGroup(
|
| 109 |
+
choices=["Quality", "TTFT (s)", "Link"],
|
| 110 |
+
label="Metrics",
|
| 111 |
+
value=["Quality", "TTFT (s)"]
|
| 112 |
)
|
| 113 |
|
| 114 |
with gr.Column():
|
| 115 |
+
# gr.Markdown("#### Model Types")
|
| 116 |
prefill_model_types = gr.CheckboxGroup(
|
| 117 |
choices=list(data["Model"].unique()),
|
| 118 |
label="Model Types",
|
|
|
|
| 120 |
)
|
| 121 |
|
| 122 |
with gr.Column():
|
| 123 |
+
# gr.Markdown("#### Datasets")
|
| 124 |
prefill_datasets = gr.CheckboxGroup(
|
| 125 |
choices=list(data[data["Stage"] == "prefill"]["Dataset"].unique()),
|
| 126 |
label="Datasets",
|
|
|
|
| 129 |
|
| 130 |
# Prefill-stage compression results
|
| 131 |
with gr.Row():
|
| 132 |
+
gr.Markdown("## Results")
|
| 133 |
|
| 134 |
+
prefill_results = gr.Dataframe(value=filter_and_display(["Quality", "TTFT (s)"], list(data["Model"].unique()), list(data["Dataset"].unique()), "prefill"), headers=["Method", "Model", "Quality", "TTFT (s)", "Link"])
|
| 135 |
|
| 136 |
# Prefill-stage visualization
|
| 137 |
with gr.Row():
|
| 138 |
+
# gr.Markdown("### Visualization")
|
| 139 |
+
prefill_plot = gr.Plot(value=create_prefill_visualization(filter_and_display(["Quality", "TTFT (s)"], list(data["Model"].unique()), list(data["Dataset"].unique()), "prefill")))
|
| 140 |
|
| 141 |
# Decode-stage selection
|
| 142 |
with gr.Row():
|
| 143 |
+
gr.Markdown("## Decode-Stage KV Cache Compression")
|
| 144 |
with gr.Row():
|
| 145 |
with gr.Column():
|
| 146 |
+
# gr.Markdown("#### Select Columns to Display")
|
| 147 |
decode_columns_to_display = gr.CheckboxGroup(
|
| 148 |
choices=["Throughput (token/s)", "Quality", "Link"],
|
| 149 |
label="Columns",
|
|
|
|
| 151 |
)
|
| 152 |
|
| 153 |
with gr.Column():
|
| 154 |
+
# gr.Markdown("#### Model Types")
|
| 155 |
decode_model_types = gr.CheckboxGroup(
|
| 156 |
choices=list(data["Model"].unique()),
|
| 157 |
label="Model Types",
|
|
|
|
| 159 |
)
|
| 160 |
|
| 161 |
with gr.Column():
|
| 162 |
+
# gr.Markdown("#### Datasets")
|
| 163 |
decode_datasets = gr.CheckboxGroup(
|
| 164 |
choices=list(data[data["Stage"] == "decode"]["Dataset"].unique()),
|
| 165 |
label="Datasets",
|
|
|
|
| 168 |
|
| 169 |
# Decode-stage compression results
|
| 170 |
with gr.Row():
|
| 171 |
+
gr.Markdown("## Results")
|
| 172 |
|
| 173 |
decode_results = gr.Dataframe(value=filter_and_display(["Throughput (token/s)", "Quality"], list(data["Model"].unique()), list(data["Dataset"].unique()), "decode"), headers=["Method", "Model", "Throughput (token/s)", "Quality", "Link"])
|
| 174 |
|
| 175 |
# Decode-stage visualization
|
| 176 |
with gr.Row():
|
| 177 |
+
# gr.Markdown("### Visualization")
|
| 178 |
+
decode_plot = gr.Plot(value=create_decode_visualization(filter_and_display(["Quality", "Throughput (token/s)"], list(data["Model"].unique()), list(data["Dataset"].unique()), "decode")))
|
| 179 |
|
| 180 |
def auto_update_prefill(selected_columns, model_types, datasets):
|
| 181 |
if not model_types or not datasets:
|
data/{decode_h2o_Llama3.1-8B-Instruct_LongGenBench.json β decode_H2O_Mistral-7B-v0.3_LongGenBench.json}
RENAMED
|
File without changes
|
data/{decode_streamingLLM_Llama3.1-8B-Instruct_LongGenBench.json β decode_StreamingLLM_Mistral-7B-v0.3_LongGenBench.json}
RENAMED
|
File without changes
|
data/{decode_vllm_Llama3.1-8B-Instruct_LongGenBench.json β decode_vLLM_Mistral-7B-v0.3_LongGenBench.json}
RENAMED
|
File without changes
|
data/{prefill_cachegen_Llama3.1-8B-Instruct_NarrativeQA.json β prefill_CacheGen_Mistral-7B-v0.3_NarrativeQA.json}
RENAMED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
"Quality": 29.53,
|
| 3 |
-
"TTFT":2.5,
|
| 4 |
"Link": "www.google.com"
|
| 5 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"Quality": 29.53,
|
| 3 |
+
"TTFT (s)": 2.5,
|
| 4 |
"Link": "www.google.com"
|
| 5 |
}
|
data/{prefill_kivi_Llama3.1-8B-Instruct_NarrativeQA.json β prefill_KIVI_Mistral-7B-v0.3_NarrativeQA.json}
RENAMED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
"Quality": 27.27,
|
| 3 |
-
"TTFT":3.3,
|
| 4 |
"Link": "www.google.com"
|
| 5 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"Quality": 27.27,
|
| 3 |
+
"TTFT (s)": 3.3,
|
| 4 |
"Link": "www.google.com"
|
| 5 |
}
|
data/{prefill_vllm_Llama3.1-8B-Instruct_NarrativeQA.json β prefill_vLLM_Mistral-7B-v0.3_NarrativeQA.json}
RENAMED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
"Quality": 29.26,
|
| 3 |
-
"TTFT":4.8,
|
| 4 |
"Link": "www.google.com"
|
| 5 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"Quality": 29.26,
|
| 3 |
+
"TTFT (s)": 4.8,
|
| 4 |
"Link": "www.google.com"
|
| 5 |
}
|