Hch Li commited on
Commit
e584fc1
·
1 Parent(s): 1fe40f1
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitignore CHANGED
@@ -7,7 +7,7 @@ __pycache__/
7
  .vscode/
8
 
9
  eval-queue/
10
- # eval-results/
11
  eval-queue-bk/
12
  eval-results-bk/
13
  logs/
 
7
  .vscode/
8
 
9
  eval-queue/
10
+ eval-results/
11
  eval-queue-bk/
12
  eval-results-bk/
13
  logs/
eval-results/.gitattributes CHANGED
@@ -9,6 +9,7 @@
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
  *.lz4 filter=lfs diff=lfs merge=lfs -text
 
12
  *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
  *.model filter=lfs diff=lfs merge=lfs -text
14
  *.msgpack filter=lfs diff=lfs merge=lfs -text
@@ -53,3 +54,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
53
  *.jpg filter=lfs diff=lfs merge=lfs -text
54
  *.jpeg filter=lfs diff=lfs merge=lfs -text
55
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
 
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
  *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mds filter=lfs diff=lfs merge=lfs -text
13
  *.mlmodel filter=lfs diff=lfs merge=lfs -text
14
  *.model filter=lfs diff=lfs merge=lfs -text
15
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
54
  *.jpg filter=lfs diff=lfs merge=lfs -text
55
  *.jpeg filter=lfs diff=lfs merge=lfs -text
56
  *.webp filter=lfs diff=lfs merge=lfs -text
57
+ # Video files - compressed
58
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
59
+ *.webm filter=lfs diff=lfs merge=lfs -text
eval-results/demo-leaderboard/gpt2-demo/results_2023-11-21T18-10-08.json CHANGED
@@ -1,7 +1,6 @@
1
  {
2
  "config": {
3
- "model_dtype": "torch.float16",
4
- "model_name": "demo-leaderboard/gpt2-demo",
5
  "model_sha": "ac3299b02780836378b9e1e68c6eead546e89f90",
6
  "method": "H2O"
7
  },
 
1
  {
2
  "config": {
3
+ "model_name": "H2O/Mistral-7B",
 
4
  "model_sha": "ac3299b02780836378b9e1e68c6eead546e89f90",
5
  "method": "H2O"
6
  },
eval-results/demo-leaderboard/gpt2-demo/results_2023-11-22 15:46:20.425378.json CHANGED
@@ -32,7 +32,7 @@
32
  "bootstrap_iters": 100000,
33
  "description_dict": null,
34
  "model_dtype": "bfloat16",
35
- "model_name": "demo-leaderboard/gpt2-demo",
36
  "model_sha": "main"
37
  }
38
  }
 
32
  "bootstrap_iters": 100000,
33
  "description_dict": null,
34
  "model_dtype": "bfloat16",
35
+ "model_name": "H2O/Llama3.1-8B",
36
  "model_sha": "main"
37
  }
38
  }
src/about.py CHANGED
@@ -14,6 +14,8 @@ class Tasks(Enum):
14
  # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
  task0 = Task("anli_r1", "acc", "ANLI")
16
  task1 = Task("logiqa", "acc_norm", "LogiQA")
 
 
17
 
18
  NUM_FEWSHOT = 0 # Change with your few shot
19
  # ---------------------------------------------------
 
14
  # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
  task0 = Task("anli_r1", "acc", "ANLI")
16
  task1 = Task("logiqa", "acc_norm", "LogiQA")
17
+ task2 = Task("system", "latency", "E2E Latency")
18
+ task3 = Task("system", "throughput", "E2E Throughput")
19
 
20
  NUM_FEWSHOT = 0 # Change with your few shot
21
  # ---------------------------------------------------
src/display/utils.py CHANGED
@@ -28,9 +28,9 @@ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "ma
28
  auto_eval_column_dict.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
29
 
30
  #Scores
31
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
32
- auto_eval_column_dict.append(["latency", ColumnContent, ColumnContent("E2E Latency", "number", True)])
33
- auto_eval_column_dict.append(["throughput", ColumnContent, ColumnContent("E2E Throughput", "number", True)])
34
 
35
  for task in Tasks:
36
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
@@ -67,8 +67,8 @@ class ModelDetails:
67
 
68
 
69
  class ModelType(Enum):
70
- PT = ModelDetails(name="Llama3.1-8B", symbol="🟢")
71
- FT = ModelDetails(name="Mistral-7B-Instruct-v0.1", symbol="🔶")
72
  #Add more models
73
  IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
74
  RL = ModelDetails(name="RL-tuned", symbol="🟦")
@@ -79,10 +79,11 @@ class ModelType(Enum):
79
 
80
  @staticmethod
81
  def from_str(type):
82
- if "fine-tuned" in type or "🔶" in type:
83
- return ModelType.FT
84
- if "pretrained" in type or "🟢" in type:
85
- return ModelType.PT
 
86
  if "RL-tuned" in type or "🟦" in type:
87
  return ModelType.RL
88
  if "instruction-tuned" in type or "⭕" in type:
 
28
  auto_eval_column_dict.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
29
 
30
  #Scores
31
+ # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
32
+ # auto_eval_column_dict.append(["latency", ColumnContent, ColumnContent("E2E Latency", "number", True)])
33
+ # auto_eval_column_dict.append(["throughput", ColumnContent, ColumnContent("E2E Throughput", "number", True)])
34
 
35
  for task in Tasks:
36
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
 
67
 
68
 
69
  class ModelType(Enum):
70
+ LLAMA8B = ModelDetails(name="Llama3.1-8B", symbol="🟢")
71
+ MISTRAL7B = ModelDetails(name="Mistral-7B-Instruct-v0.1", symbol="🔶")
72
  #Add more models
73
  IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
74
  RL = ModelDetails(name="RL-tuned", symbol="🟦")
 
79
 
80
  @staticmethod
81
  def from_str(type):
82
+ print("wwww type", type)
83
+ if "Mistral-7B" in type or "🔶" in type:
84
+ return ModelType.MISTRAL7B
85
+ if "Llama3.1-8B" in type or "🟢" in type:
86
+ return ModelType.LLAMA8B
87
  if "RL-tuned" in type or "🟦" in type:
88
  return ModelType.RL
89
  if "instruction-tuned" in type or "⭕" in type:
src/leaderboard/read_evals.py CHANGED
@@ -103,6 +103,7 @@ class EvalResult:
103
  with open(request_file, "r") as f:
104
  request = json.load(f)
105
  self.model_type = ModelType.from_str(request.get("model_type", ""))
 
106
  self.weight_type = WeightType[request.get("weight_type", "Original")]
107
  self.license = request.get("license", "?")
108
  self.likes = request.get("likes", 0)
@@ -113,7 +114,6 @@ class EvalResult:
113
 
114
  def to_dict(self):
115
  """Converts the Eval Result to a dict compatible with our dataframe display"""
116
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
117
  data_dict = {
118
  "eval_name": self.eval_name, # not a column, just a save name,
119
  AutoEvalColumn.precision.name: self.precision.value.name,
@@ -124,7 +124,6 @@ class EvalResult:
124
  AutoEvalColumn.architecture.name: self.architecture,
125
  AutoEvalColumn.model.name: make_clickable_model(self.full_model),
126
  AutoEvalColumn.revision.name: self.revision,
127
- AutoEvalColumn.average.name: average,
128
  AutoEvalColumn.license.name: self.license,
129
  AutoEvalColumn.likes.name: self.likes,
130
  AutoEvalColumn.params.name: self.num_params,
@@ -132,7 +131,6 @@ class EvalResult:
132
  }
133
 
134
  for task in Tasks:
135
- print(task.value.col_name)
136
  data_dict[task.value.col_name] = self.results[task.value.benchmark]
137
 
138
  return data_dict
@@ -144,6 +142,8 @@ def get_request_file_for_model(requests_path, model_name, method, precision):
144
  requests_path,
145
  f"{model_name}_eval_request_*.json",
146
  )
 
 
147
  request_files = glob.glob(request_files)
148
 
149
  # Select correct request file (precision)
@@ -154,7 +154,6 @@ def get_request_file_for_model(requests_path, model_name, method, precision):
154
  req_content = json.load(f)
155
  if (
156
  req_content["status"] in ["FINISHED"]
157
- and req_content["precision"] == precision.split(".")[-1]
158
  ):
159
  request_file = tmp_request_file
160
  return request_file
 
103
  with open(request_file, "r") as f:
104
  request = json.load(f)
105
  self.model_type = ModelType.from_str(request.get("model_type", ""))
106
+ print("WTF", self.model_type)
107
  self.weight_type = WeightType[request.get("weight_type", "Original")]
108
  self.license = request.get("license", "?")
109
  self.likes = request.get("likes", 0)
 
114
 
115
  def to_dict(self):
116
  """Converts the Eval Result to a dict compatible with our dataframe display"""
 
117
  data_dict = {
118
  "eval_name": self.eval_name, # not a column, just a save name,
119
  AutoEvalColumn.precision.name: self.precision.value.name,
 
124
  AutoEvalColumn.architecture.name: self.architecture,
125
  AutoEvalColumn.model.name: make_clickable_model(self.full_model),
126
  AutoEvalColumn.revision.name: self.revision,
 
127
  AutoEvalColumn.license.name: self.license,
128
  AutoEvalColumn.likes.name: self.likes,
129
  AutoEvalColumn.params.name: self.num_params,
 
131
  }
132
 
133
  for task in Tasks:
 
134
  data_dict[task.value.col_name] = self.results[task.value.benchmark]
135
 
136
  return data_dict
 
142
  requests_path,
143
  f"{model_name}_eval_request_*.json",
144
  )
145
+ print(request_files)
146
+
147
  request_files = glob.glob(request_files)
148
 
149
  # Select correct request file (precision)
 
154
  req_content = json.load(f)
155
  if (
156
  req_content["status"] in ["FINISHED"]
 
157
  ):
158
  request_file = tmp_request_file
159
  return request_file
src/populate.py CHANGED
@@ -15,7 +15,6 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
15
 
16
  df = pd.DataFrame.from_records(all_data_json)
17
  print(df.columns)
18
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
19
  df = df[cols].round(decimals=2)
20
 
21
  # filter out if any of the benchmarks have not been produced
 
15
 
16
  df = pd.DataFrame.from_records(all_data_json)
17
  print(df.columns)
 
18
  df = df[cols].round(decimals=2)
19
 
20
  # filter out if any of the benchmarks have not been produced