Hch Li
commited on
Commit
·
e584fc1
1
Parent(s):
1fe40f1
something
Browse files- .DS_Store +0 -0
- .gitignore +1 -1
- eval-results/.gitattributes +4 -0
- eval-results/demo-leaderboard/gpt2-demo/results_2023-11-21T18-10-08.json +1 -2
- eval-results/demo-leaderboard/gpt2-demo/results_2023-11-22 15:46:20.425378.json +1 -1
- src/about.py +2 -0
- src/display/utils.py +10 -9
- src/leaderboard/read_evals.py +3 -4
- src/populate.py +0 -1
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
.gitignore
CHANGED
|
@@ -7,7 +7,7 @@ __pycache__/
|
|
| 7 |
.vscode/
|
| 8 |
|
| 9 |
eval-queue/
|
| 10 |
-
|
| 11 |
eval-queue-bk/
|
| 12 |
eval-results-bk/
|
| 13 |
logs/
|
|
|
|
| 7 |
.vscode/
|
| 8 |
|
| 9 |
eval-queue/
|
| 10 |
+
eval-results/
|
| 11 |
eval-queue-bk/
|
| 12 |
eval-results-bk/
|
| 13 |
logs/
|
eval-results/.gitattributes
CHANGED
|
@@ -9,6 +9,7 @@
|
|
| 9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 12 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 13 |
*.model filter=lfs diff=lfs merge=lfs -text
|
| 14 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
@@ -53,3 +54,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.mds filter=lfs diff=lfs merge=lfs -text
|
| 13 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 14 |
*.model filter=lfs diff=lfs merge=lfs -text
|
| 15 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 54 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 56 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
| 57 |
+
# Video files - compressed
|
| 58 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
+
*.webm filter=lfs diff=lfs merge=lfs -text
|
eval-results/demo-leaderboard/gpt2-demo/results_2023-11-21T18-10-08.json
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
{
|
| 2 |
"config": {
|
| 3 |
-
"
|
| 4 |
-
"model_name": "demo-leaderboard/gpt2-demo",
|
| 5 |
"model_sha": "ac3299b02780836378b9e1e68c6eead546e89f90",
|
| 6 |
"method": "H2O"
|
| 7 |
},
|
|
|
|
| 1 |
{
|
| 2 |
"config": {
|
| 3 |
+
"model_name": "H2O/Mistral-7B",
|
|
|
|
| 4 |
"model_sha": "ac3299b02780836378b9e1e68c6eead546e89f90",
|
| 5 |
"method": "H2O"
|
| 6 |
},
|
eval-results/demo-leaderboard/gpt2-demo/results_2023-11-22 15:46:20.425378.json
CHANGED
|
@@ -32,7 +32,7 @@
|
|
| 32 |
"bootstrap_iters": 100000,
|
| 33 |
"description_dict": null,
|
| 34 |
"model_dtype": "bfloat16",
|
| 35 |
-
"model_name": "
|
| 36 |
"model_sha": "main"
|
| 37 |
}
|
| 38 |
}
|
|
|
|
| 32 |
"bootstrap_iters": 100000,
|
| 33 |
"description_dict": null,
|
| 34 |
"model_dtype": "bfloat16",
|
| 35 |
+
"model_name": "H2O/Llama3.1-8B",
|
| 36 |
"model_sha": "main"
|
| 37 |
}
|
| 38 |
}
|
src/about.py
CHANGED
|
@@ -14,6 +14,8 @@ class Tasks(Enum):
|
|
| 14 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
task0 = Task("anli_r1", "acc", "ANLI")
|
| 16 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
|
|
|
|
|
|
| 17 |
|
| 18 |
NUM_FEWSHOT = 0 # Change with your few shot
|
| 19 |
# ---------------------------------------------------
|
|
|
|
| 14 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
task0 = Task("anli_r1", "acc", "ANLI")
|
| 16 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
| 17 |
+
task2 = Task("system", "latency", "E2E Latency")
|
| 18 |
+
task3 = Task("system", "throughput", "E2E Throughput")
|
| 19 |
|
| 20 |
NUM_FEWSHOT = 0 # Change with your few shot
|
| 21 |
# ---------------------------------------------------
|
src/display/utils.py
CHANGED
|
@@ -28,9 +28,9 @@ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "ma
|
|
| 28 |
auto_eval_column_dict.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
|
| 29 |
|
| 30 |
#Scores
|
| 31 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
| 32 |
-
auto_eval_column_dict.append(["latency", ColumnContent, ColumnContent("E2E Latency", "number", True)])
|
| 33 |
-
auto_eval_column_dict.append(["throughput", ColumnContent, ColumnContent("E2E Throughput", "number", True)])
|
| 34 |
|
| 35 |
for task in Tasks:
|
| 36 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
|
@@ -67,8 +67,8 @@ class ModelDetails:
|
|
| 67 |
|
| 68 |
|
| 69 |
class ModelType(Enum):
|
| 70 |
-
|
| 71 |
-
|
| 72 |
#Add more models
|
| 73 |
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
| 74 |
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
|
@@ -79,10 +79,11 @@ class ModelType(Enum):
|
|
| 79 |
|
| 80 |
@staticmethod
|
| 81 |
def from_str(type):
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
| 86 |
if "RL-tuned" in type or "🟦" in type:
|
| 87 |
return ModelType.RL
|
| 88 |
if "instruction-tuned" in type or "⭕" in type:
|
|
|
|
| 28 |
auto_eval_column_dict.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
|
| 29 |
|
| 30 |
#Scores
|
| 31 |
+
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
| 32 |
+
# auto_eval_column_dict.append(["latency", ColumnContent, ColumnContent("E2E Latency", "number", True)])
|
| 33 |
+
# auto_eval_column_dict.append(["throughput", ColumnContent, ColumnContent("E2E Throughput", "number", True)])
|
| 34 |
|
| 35 |
for task in Tasks:
|
| 36 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
class ModelType(Enum):
|
| 70 |
+
LLAMA8B = ModelDetails(name="Llama3.1-8B", symbol="🟢")
|
| 71 |
+
MISTRAL7B = ModelDetails(name="Mistral-7B-Instruct-v0.1", symbol="🔶")
|
| 72 |
#Add more models
|
| 73 |
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
| 74 |
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
|
|
|
| 79 |
|
| 80 |
@staticmethod
|
| 81 |
def from_str(type):
|
| 82 |
+
print("wwww type", type)
|
| 83 |
+
if "Mistral-7B" in type or "🔶" in type:
|
| 84 |
+
return ModelType.MISTRAL7B
|
| 85 |
+
if "Llama3.1-8B" in type or "🟢" in type:
|
| 86 |
+
return ModelType.LLAMA8B
|
| 87 |
if "RL-tuned" in type or "🟦" in type:
|
| 88 |
return ModelType.RL
|
| 89 |
if "instruction-tuned" in type or "⭕" in type:
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -103,6 +103,7 @@ class EvalResult:
|
|
| 103 |
with open(request_file, "r") as f:
|
| 104 |
request = json.load(f)
|
| 105 |
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
|
|
|
| 106 |
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
| 107 |
self.license = request.get("license", "?")
|
| 108 |
self.likes = request.get("likes", 0)
|
|
@@ -113,7 +114,6 @@ class EvalResult:
|
|
| 113 |
|
| 114 |
def to_dict(self):
|
| 115 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 116 |
-
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
| 117 |
data_dict = {
|
| 118 |
"eval_name": self.eval_name, # not a column, just a save name,
|
| 119 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
|
@@ -124,7 +124,6 @@ class EvalResult:
|
|
| 124 |
AutoEvalColumn.architecture.name: self.architecture,
|
| 125 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 126 |
AutoEvalColumn.revision.name: self.revision,
|
| 127 |
-
AutoEvalColumn.average.name: average,
|
| 128 |
AutoEvalColumn.license.name: self.license,
|
| 129 |
AutoEvalColumn.likes.name: self.likes,
|
| 130 |
AutoEvalColumn.params.name: self.num_params,
|
|
@@ -132,7 +131,6 @@ class EvalResult:
|
|
| 132 |
}
|
| 133 |
|
| 134 |
for task in Tasks:
|
| 135 |
-
print(task.value.col_name)
|
| 136 |
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
| 137 |
|
| 138 |
return data_dict
|
|
@@ -144,6 +142,8 @@ def get_request_file_for_model(requests_path, model_name, method, precision):
|
|
| 144 |
requests_path,
|
| 145 |
f"{model_name}_eval_request_*.json",
|
| 146 |
)
|
|
|
|
|
|
|
| 147 |
request_files = glob.glob(request_files)
|
| 148 |
|
| 149 |
# Select correct request file (precision)
|
|
@@ -154,7 +154,6 @@ def get_request_file_for_model(requests_path, model_name, method, precision):
|
|
| 154 |
req_content = json.load(f)
|
| 155 |
if (
|
| 156 |
req_content["status"] in ["FINISHED"]
|
| 157 |
-
and req_content["precision"] == precision.split(".")[-1]
|
| 158 |
):
|
| 159 |
request_file = tmp_request_file
|
| 160 |
return request_file
|
|
|
|
| 103 |
with open(request_file, "r") as f:
|
| 104 |
request = json.load(f)
|
| 105 |
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
| 106 |
+
print("WTF", self.model_type)
|
| 107 |
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
| 108 |
self.license = request.get("license", "?")
|
| 109 |
self.likes = request.get("likes", 0)
|
|
|
|
| 114 |
|
| 115 |
def to_dict(self):
|
| 116 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
|
| 117 |
data_dict = {
|
| 118 |
"eval_name": self.eval_name, # not a column, just a save name,
|
| 119 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
|
|
|
| 124 |
AutoEvalColumn.architecture.name: self.architecture,
|
| 125 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 126 |
AutoEvalColumn.revision.name: self.revision,
|
|
|
|
| 127 |
AutoEvalColumn.license.name: self.license,
|
| 128 |
AutoEvalColumn.likes.name: self.likes,
|
| 129 |
AutoEvalColumn.params.name: self.num_params,
|
|
|
|
| 131 |
}
|
| 132 |
|
| 133 |
for task in Tasks:
|
|
|
|
| 134 |
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
| 135 |
|
| 136 |
return data_dict
|
|
|
|
| 142 |
requests_path,
|
| 143 |
f"{model_name}_eval_request_*.json",
|
| 144 |
)
|
| 145 |
+
print(request_files)
|
| 146 |
+
|
| 147 |
request_files = glob.glob(request_files)
|
| 148 |
|
| 149 |
# Select correct request file (precision)
|
|
|
|
| 154 |
req_content = json.load(f)
|
| 155 |
if (
|
| 156 |
req_content["status"] in ["FINISHED"]
|
|
|
|
| 157 |
):
|
| 158 |
request_file = tmp_request_file
|
| 159 |
return request_file
|
src/populate.py
CHANGED
|
@@ -15,7 +15,6 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
| 15 |
|
| 16 |
df = pd.DataFrame.from_records(all_data_json)
|
| 17 |
print(df.columns)
|
| 18 |
-
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 19 |
df = df[cols].round(decimals=2)
|
| 20 |
|
| 21 |
# filter out if any of the benchmarks have not been produced
|
|
|
|
| 15 |
|
| 16 |
df = pd.DataFrame.from_records(all_data_json)
|
| 17 |
print(df.columns)
|
|
|
|
| 18 |
df = df[cols].round(decimals=2)
|
| 19 |
|
| 20 |
# filter out if any of the benchmarks have not been produced
|