Spaces:
Running
Running
lucabadiali
commited on
Commit
·
f97ec54
1
Parent(s):
8604850
first commit
Browse files- nb.ipynb +380 -0
- requirements.txt +103 -0
- train_labels.txt +0 -0
- train_text.txt +0 -0
nb.ipynb
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 3,
|
| 6 |
+
"id": "3a03d7b9",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"data": {
|
| 11 |
+
"text/plain": [
|
| 12 |
+
"device(type='cpu')"
|
| 13 |
+
]
|
| 14 |
+
},
|
| 15 |
+
"execution_count": 3,
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"output_type": "execute_result"
|
| 18 |
+
}
|
| 19 |
+
],
|
| 20 |
+
"source": [
|
| 21 |
+
"from transformers import AutoModelForSequenceClassification\n",
|
| 22 |
+
"from transformers import TFAutoModelForSequenceClassification\n",
|
| 23 |
+
"from transformers import AutoTokenizer, RobertaForSequenceClassification\n",
|
| 24 |
+
"import numpy as np\n",
|
| 25 |
+
"from scipy.special import softmax\n",
|
| 26 |
+
"import csv\n",
|
| 27 |
+
"import urllib.request\n",
|
| 28 |
+
"import torch.utils.data as data_utils\n",
|
| 29 |
+
"import torch\n",
|
| 30 |
+
"\n",
|
| 31 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 32 |
+
"device\n"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"cell_type": "code",
|
| 37 |
+
"execution_count": 2,
|
| 38 |
+
"id": "e50cfece",
|
| 39 |
+
"metadata": {},
|
| 40 |
+
"outputs": [],
|
| 41 |
+
"source": [
|
| 42 |
+
"def preprocess(text):\n",
|
| 43 |
+
" new_text = []\n",
|
| 44 |
+
" for t in text.split(\" \"):\n",
|
| 45 |
+
" t = '@user' if t.startswith('@') and len(t) > 1 else t\n",
|
| 46 |
+
" t = 'http' if t.startswith('http') else t\n",
|
| 47 |
+
" new_text.append(t)\n",
|
| 48 |
+
" return \" \".join(new_text)"
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"cell_type": "code",
|
| 53 |
+
"execution_count": 4,
|
| 54 |
+
"id": "0b451180",
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"outputs": [
|
| 57 |
+
{
|
| 58 |
+
"data": {
|
| 59 |
+
"text/plain": [
|
| 60 |
+
"['negative', 'neutral', 'positive']"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
"execution_count": 4,
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"output_type": "execute_result"
|
| 66 |
+
}
|
| 67 |
+
],
|
| 68 |
+
"source": [
|
| 69 |
+
"task='sentiment'\n",
|
| 70 |
+
"MODEL = f\"cardiffnlp/twitter-roberta-base-{task}\"\n",
|
| 71 |
+
"# download label mapping\n",
|
| 72 |
+
"mapping_link = f\"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt\"\n",
|
| 73 |
+
"with urllib.request.urlopen(mapping_link) as f:\n",
|
| 74 |
+
" html = f.read().decode('utf-8').split(\"\\n\")\n",
|
| 75 |
+
" csvreader = csv.reader(html, delimiter='\\t')\n",
|
| 76 |
+
"labels = [row[1] for row in csvreader if len(row) > 1]\n",
|
| 77 |
+
"labels"
|
| 78 |
+
]
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"cell_type": "code",
|
| 82 |
+
"execution_count": 66,
|
| 83 |
+
"id": "ede5d09e",
|
| 84 |
+
"metadata": {},
|
| 85 |
+
"outputs": [
|
| 86 |
+
{
|
| 87 |
+
"name": "stderr",
|
| 88 |
+
"output_type": "stream",
|
| 89 |
+
"text": [
|
| 90 |
+
"Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at FacebookAI/roberta-base and are newly initialized: ['classifier.dense.bias', 'classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight']\n",
|
| 91 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 92 |
+
]
|
| 93 |
+
}
|
| 94 |
+
],
|
| 95 |
+
"source": [
|
| 96 |
+
"MODEL = \"FacebookAI/roberta-base\"\n",
|
| 97 |
+
"model = RobertaForSequenceClassification.from_pretrained(\n",
|
| 98 |
+
" MODEL, num_labels=3, problem_type=\"multi_label_classification\")\n",
|
| 99 |
+
"tokenizer = AutoTokenizer.from_pretrained(MODEL)"
|
| 100 |
+
]
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"cell_type": "code",
|
| 104 |
+
"execution_count": 92,
|
| 105 |
+
"id": "c4bafe30",
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"outputs": [],
|
| 108 |
+
"source": [
|
| 109 |
+
"train_text_file = \"train_text.txt\"\n",
|
| 110 |
+
"with open(train_text_file, \"r\") as f:\n",
|
| 111 |
+
" texts = f.readlines()\n",
|
| 112 |
+
"\n",
|
| 113 |
+
"train_label_file = \"train_labels.txt\"\n",
|
| 114 |
+
"with open(train_label_file, \"r\") as f:\n",
|
| 115 |
+
" labels = f.readlines()\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"len(texts), len(labels)\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"texts, labels = texts[:100], labels[:100]\n",
|
| 120 |
+
"\n"
|
| 121 |
+
]
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "code",
|
| 125 |
+
"execution_count": null,
|
| 126 |
+
"id": "87030ba1",
|
| 127 |
+
"metadata": {},
|
| 128 |
+
"outputs": [
|
| 129 |
+
{
|
| 130 |
+
"data": {
|
| 131 |
+
"text/plain": [
|
| 132 |
+
"(2, 100)"
|
| 133 |
+
]
|
| 134 |
+
},
|
| 135 |
+
"execution_count": 93,
|
| 136 |
+
"metadata": {},
|
| 137 |
+
"output_type": "execute_result"
|
| 138 |
+
}
|
| 139 |
+
],
|
| 140 |
+
"source": [
|
| 141 |
+
"encoded_inputs = tokenizer([ preprocess(t.strip()) for t in texts], return_tensors='pt', padding=True,\n",
|
| 142 |
+
" truncation=True)\n",
|
| 143 |
+
"labels = [int(labels[i].strip()) for i in range(len(labels))]\n",
|
| 144 |
+
"labels = torch.tensor(labels, dtype=torch.int)\n",
|
| 145 |
+
"len(encoded_inputs), len(labels)"
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "code",
|
| 150 |
+
"execution_count": 94,
|
| 151 |
+
"id": "e9548356",
|
| 152 |
+
"metadata": {},
|
| 153 |
+
"outputs": [],
|
| 154 |
+
"source": [
|
| 155 |
+
"dataset = data_utils.TensorDataset(encoded_inputs[\"input_ids\"], encoded_inputs[\"attention_mask\"], labels)\n",
|
| 156 |
+
"test_dataloader = data_utils.DataLoader(dataset, batch_size=10, shuffle=True)\n",
|
| 157 |
+
"\n"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": null,
|
| 163 |
+
"id": "2f40f7fd",
|
| 164 |
+
"metadata": {},
|
| 165 |
+
"outputs": [],
|
| 166 |
+
"source": []
|
| 167 |
+
},
|
| 168 |
+
{
|
| 169 |
+
"cell_type": "code",
|
| 170 |
+
"execution_count": null,
|
| 171 |
+
"id": "08435697",
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"outputs": [],
|
| 174 |
+
"source": [
|
| 175 |
+
"\n",
|
| 176 |
+
"model = AutoModelForSequenceClassification.from_pretrained(MODEL)\n",
|
| 177 |
+
"tokenizer = AutoTokenizer.from_pretrained(MODEL)\n",
|
| 178 |
+
"text = \"Good night 😊\"\n",
|
| 179 |
+
"text = preprocess(text)\n",
|
| 180 |
+
"encoded_input = tokenizer(text, return_tensors='pt')\n",
|
| 181 |
+
"output = model(**encoded_input)\n",
|
| 182 |
+
"scores = output[0][0].detach().numpy()\n",
|
| 183 |
+
"scores = softmax(scores)\n"
|
| 184 |
+
]
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"cell_type": "code",
|
| 188 |
+
"execution_count": 10,
|
| 189 |
+
"id": "cf6dfc8f",
|
| 190 |
+
"metadata": {},
|
| 191 |
+
"outputs": [
|
| 192 |
+
{
|
| 193 |
+
"name": "stdout",
|
| 194 |
+
"output_type": "stream",
|
| 195 |
+
"text": [
|
| 196 |
+
"1) positive 0.8466\n",
|
| 197 |
+
"2) neutral 0.1458\n",
|
| 198 |
+
"3) negative 0.0076\n"
|
| 199 |
+
]
|
| 200 |
+
}
|
| 201 |
+
],
|
| 202 |
+
"source": [
|
| 203 |
+
"ranking = np.argsort(scores)\n",
|
| 204 |
+
"ranking = ranking[::-1]\n",
|
| 205 |
+
"for i in range(scores.shape[0]):\n",
|
| 206 |
+
" l = labels[ranking[i]]\n",
|
| 207 |
+
" s = scores[ranking[i]]\n",
|
| 208 |
+
" print(f\"{i+1}) {l} {np.round(float(s), 4)}\")"
|
| 209 |
+
]
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"cell_type": "markdown",
|
| 213 |
+
"id": "0f25d8f1",
|
| 214 |
+
"metadata": {},
|
| 215 |
+
"source": [
|
| 216 |
+
"### Tentativo di training"
|
| 217 |
+
]
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"cell_type": "code",
|
| 221 |
+
"execution_count": 3,
|
| 222 |
+
"id": "0a6382f4",
|
| 223 |
+
"metadata": {},
|
| 224 |
+
"outputs": [],
|
| 225 |
+
"source": [
|
| 226 |
+
"import numpy as np\n",
|
| 227 |
+
"import evaluate\n",
|
| 228 |
+
"\n",
|
| 229 |
+
"from transformers import AutoTokenizer\n",
|
| 230 |
+
"from transformers import AutoModelForSequenceClassification\n",
|
| 231 |
+
"from transformers import TrainingArguments, Trainer\n",
|
| 232 |
+
"from datasets import load_dataset, concatenate_datasets\n",
|
| 233 |
+
"\n",
|
| 234 |
+
"def tokenize_function(examples):\n",
|
| 235 |
+
" return tokenizer(examples[\"text\"], padding=\"max_length\", truncation=True)\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"def compute_metrics(eval_pred):\n",
|
| 238 |
+
" logits, labels = eval_pred\n",
|
| 239 |
+
" predictions = np.argmax(logits, axis=-1)\n",
|
| 240 |
+
" return metric.compute(predictions=predictions, references=labels, average='macro')\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"dataset = load_dataset('tweet_eval', 'sentiment')\n",
|
| 244 |
+
"\n",
|
| 245 |
+
"\n"
|
| 246 |
+
]
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"cell_type": "code",
|
| 250 |
+
"execution_count": 5,
|
| 251 |
+
"id": "dafaf26d",
|
| 252 |
+
"metadata": {},
|
| 253 |
+
"outputs": [
|
| 254 |
+
{
|
| 255 |
+
"name": "stderr",
|
| 256 |
+
"output_type": "stream",
|
| 257 |
+
"text": [
|
| 258 |
+
"Map: 100%|██████████| 45615/45615 [00:10<00:00, 4346.61 examples/s]\n",
|
| 259 |
+
"Map: 100%|██████████| 12284/12284 [00:03<00:00, 3758.76 examples/s]\n",
|
| 260 |
+
"Map: 100%|██████████| 2000/2000 [00:00<00:00, 4820.04 examples/s]\n",
|
| 261 |
+
"Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at cardiffnlp/twitter-roberta-base-sep2022 and are newly initialized: ['classifier.dense.bias', 'classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight']\n",
|
| 262 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
| 263 |
+
"/workspaces/MLOPS_Project/Env/lib/python3.12/site-packages/torch/utils/data/dataloader.py:668: UserWarning: 'pin_memory' argument is set as true but no accelerator is found, then device pinned memory won't be used.\n",
|
| 264 |
+
" warnings.warn(warn_msg)\n"
|
| 265 |
+
]
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"ename": "",
|
| 269 |
+
"evalue": "",
|
| 270 |
+
"output_type": "error",
|
| 271 |
+
"traceback": [
|
| 272 |
+
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
|
| 273 |
+
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
|
| 274 |
+
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
|
| 275 |
+
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
| 276 |
+
]
|
| 277 |
+
}
|
| 278 |
+
],
|
| 279 |
+
"source": [
|
| 280 |
+
"MODEL_NAME = 'cardiffnlp/twitter-roberta-base-sep2022' # change to desired model from the hub\n",
|
| 281 |
+
"tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)\n",
|
| 282 |
+
"tokenized_datasets = dataset.map(tokenize_function, batched=True)\n",
|
| 283 |
+
"\n",
|
| 284 |
+
"# augment train set with test set, for downstream apps only - DO NOT EVALUATE ON TEST\n",
|
| 285 |
+
"# tokenized_datasets['train+test'] = concatenate_datasets([tokenized_datasets['train'],\n",
|
| 286 |
+
"# tokenized_datasets['test']])\n",
|
| 287 |
+
"\n",
|
| 288 |
+
"model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=3)\n",
|
| 289 |
+
"\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"training_args = TrainingArguments(\n",
|
| 292 |
+
" output_dir=\"test_trainer\",\n",
|
| 293 |
+
" learning_rate=1e-5,\n",
|
| 294 |
+
" per_device_train_batch_size=16, # modern name\n",
|
| 295 |
+
" per_device_eval_batch_size=16, # modern name\n",
|
| 296 |
+
" num_train_epochs=10,\n",
|
| 297 |
+
" weight_decay=0.01,\n",
|
| 298 |
+
" warmup_ratio=0.1,\n",
|
| 299 |
+
"\n",
|
| 300 |
+
" eval_strategy=\"epoch\",\n",
|
| 301 |
+
" logging_strategy=\"epoch\",\n",
|
| 302 |
+
" save_strategy=\"epoch\",\n",
|
| 303 |
+
"\n",
|
| 304 |
+
" load_best_model_at_end=True,\n",
|
| 305 |
+
" metric_for_best_model=\"recall\",\n",
|
| 306 |
+
" greater_is_better=True,\n",
|
| 307 |
+
" report_to=\"none\",\n",
|
| 308 |
+
")\n",
|
| 309 |
+
"\n",
|
| 310 |
+
"metric = evaluate.load('recall') # default metric for sentiment dataset is recall (macro)\n",
|
| 311 |
+
"\n",
|
| 312 |
+
"trainer = Trainer(\n",
|
| 313 |
+
" model=model,\n",
|
| 314 |
+
" args=training_args,\n",
|
| 315 |
+
" train_dataset=tokenized_datasets['train'],\n",
|
| 316 |
+
" eval_dataset=tokenized_datasets['validation'],\n",
|
| 317 |
+
" compute_metrics=compute_metrics,\n",
|
| 318 |
+
")\n",
|
| 319 |
+
"\n",
|
| 320 |
+
"trainer.train()\n",
|
| 321 |
+
"\n",
|
| 322 |
+
"trainer.create_model_card()\n",
|
| 323 |
+
"trainer.save_model('saved_model')\n",
|
| 324 |
+
"\n",
|
| 325 |
+
"\n"
|
| 326 |
+
]
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"cell_type": "code",
|
| 330 |
+
"execution_count": 1,
|
| 331 |
+
"id": "183032a5",
|
| 332 |
+
"metadata": {},
|
| 333 |
+
"outputs": [
|
| 334 |
+
{
|
| 335 |
+
"ename": "NameError",
|
| 336 |
+
"evalue": "name 'torch' is not defined",
|
| 337 |
+
"output_type": "error",
|
| 338 |
+
"traceback": [
|
| 339 |
+
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
| 340 |
+
"\u001b[31mNameError\u001b[39m Traceback (most recent call last)",
|
| 341 |
+
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43mtorch\u001b[49m.cuda.is_available()\n",
|
| 342 |
+
"\u001b[31mNameError\u001b[39m: name 'torch' is not defined"
|
| 343 |
+
]
|
| 344 |
+
}
|
| 345 |
+
],
|
| 346 |
+
"source": [
|
| 347 |
+
"torch.cuda.is_available()\n"
|
| 348 |
+
]
|
| 349 |
+
},
|
| 350 |
+
{
|
| 351 |
+
"cell_type": "code",
|
| 352 |
+
"execution_count": null,
|
| 353 |
+
"id": "1246f9c6",
|
| 354 |
+
"metadata": {},
|
| 355 |
+
"outputs": [],
|
| 356 |
+
"source": []
|
| 357 |
+
}
|
| 358 |
+
],
|
| 359 |
+
"metadata": {
|
| 360 |
+
"kernelspec": {
|
| 361 |
+
"display_name": "Env",
|
| 362 |
+
"language": "python",
|
| 363 |
+
"name": "python3"
|
| 364 |
+
},
|
| 365 |
+
"language_info": {
|
| 366 |
+
"codemirror_mode": {
|
| 367 |
+
"name": "ipython",
|
| 368 |
+
"version": 3
|
| 369 |
+
},
|
| 370 |
+
"file_extension": ".py",
|
| 371 |
+
"mimetype": "text/x-python",
|
| 372 |
+
"name": "python",
|
| 373 |
+
"nbconvert_exporter": "python",
|
| 374 |
+
"pygments_lexer": "ipython3",
|
| 375 |
+
"version": "3.12.1"
|
| 376 |
+
}
|
| 377 |
+
},
|
| 378 |
+
"nbformat": 4,
|
| 379 |
+
"nbformat_minor": 5
|
| 380 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate==1.11.0
|
| 2 |
+
aiohappyeyeballs==2.6.1
|
| 3 |
+
aiohttp==3.13.2
|
| 4 |
+
aiosignal==1.4.0
|
| 5 |
+
anyio==4.11.0
|
| 6 |
+
asttokens==3.0.0
|
| 7 |
+
attrs==25.4.0
|
| 8 |
+
certifi==2025.10.5
|
| 9 |
+
charset-normalizer==3.4.4
|
| 10 |
+
comm==0.2.3
|
| 11 |
+
contourpy==1.3.3
|
| 12 |
+
cycler==0.12.1
|
| 13 |
+
datasets==4.4.1
|
| 14 |
+
debugpy==1.8.17
|
| 15 |
+
decorator==5.2.1
|
| 16 |
+
dill==0.4.0
|
| 17 |
+
evaluate==0.4.6
|
| 18 |
+
executing==2.2.1
|
| 19 |
+
filelock==3.20.0
|
| 20 |
+
fonttools==4.60.1
|
| 21 |
+
frozenlist==1.8.0
|
| 22 |
+
fsspec==2025.10.0
|
| 23 |
+
gluonnlp==0.8.3
|
| 24 |
+
graphviz==0.8.4
|
| 25 |
+
h11==0.16.0
|
| 26 |
+
hf-xet==1.2.0
|
| 27 |
+
httpcore==1.0.9
|
| 28 |
+
httpx==0.28.1
|
| 29 |
+
huggingface-hub==0.36.0
|
| 30 |
+
idna==3.11
|
| 31 |
+
ipykernel==7.1.0
|
| 32 |
+
ipython==9.7.0
|
| 33 |
+
ipython_pygments_lexers==1.1.1
|
| 34 |
+
jedi==0.19.2
|
| 35 |
+
Jinja2==3.1.6
|
| 36 |
+
jupyter_client==8.6.3
|
| 37 |
+
jupyter_core==5.9.1
|
| 38 |
+
kiwisolver==1.4.9
|
| 39 |
+
MarkupSafe==3.0.3
|
| 40 |
+
matplotlib==3.10.7
|
| 41 |
+
matplotlib-inline==0.2.1
|
| 42 |
+
mpmath==1.3.0
|
| 43 |
+
multidict==6.7.0
|
| 44 |
+
multiprocess==0.70.18
|
| 45 |
+
mxnet==1.6.0
|
| 46 |
+
nest-asyncio==1.6.0
|
| 47 |
+
networkx==3.5
|
| 48 |
+
numpy==1.26.4
|
| 49 |
+
nvidia-cublas-cu12==12.8.4.1
|
| 50 |
+
nvidia-cuda-cupti-cu12==12.8.90
|
| 51 |
+
nvidia-cuda-nvrtc-cu12==12.8.93
|
| 52 |
+
nvidia-cuda-runtime-cu12==12.8.90
|
| 53 |
+
nvidia-cudnn-cu12==9.10.2.21
|
| 54 |
+
nvidia-cufft-cu12==11.3.3.83
|
| 55 |
+
nvidia-cufile-cu12==1.13.1.3
|
| 56 |
+
nvidia-curand-cu12==10.3.9.90
|
| 57 |
+
nvidia-cusolver-cu12==11.7.3.90
|
| 58 |
+
nvidia-cusparse-cu12==12.5.8.93
|
| 59 |
+
nvidia-cusparselt-cu12==0.7.1
|
| 60 |
+
nvidia-nccl-cu12==2.27.5
|
| 61 |
+
nvidia-nvjitlink-cu12==12.8.93
|
| 62 |
+
nvidia-nvshmem-cu12==3.3.20
|
| 63 |
+
nvidia-nvtx-cu12==12.8.90
|
| 64 |
+
packaging==25.0
|
| 65 |
+
pandas==2.3.3
|
| 66 |
+
parso==0.8.5
|
| 67 |
+
pexpect==4.9.0
|
| 68 |
+
pillow==12.0.0
|
| 69 |
+
platformdirs==4.5.0
|
| 70 |
+
prompt_toolkit==3.0.52
|
| 71 |
+
propcache==0.4.1
|
| 72 |
+
psutil==7.1.3
|
| 73 |
+
ptyprocess==0.7.0
|
| 74 |
+
pure_eval==0.2.3
|
| 75 |
+
pyarrow==22.0.0
|
| 76 |
+
Pygments==2.19.2
|
| 77 |
+
pyparsing==3.2.5
|
| 78 |
+
python-dateutil==2.9.0.post0
|
| 79 |
+
pytz==2025.2
|
| 80 |
+
PyYAML==6.0.3
|
| 81 |
+
pyzmq==27.1.0
|
| 82 |
+
regex==2025.11.3
|
| 83 |
+
requests==2.32.5
|
| 84 |
+
safetensors==0.6.2
|
| 85 |
+
scipy==1.16.3
|
| 86 |
+
setuptools==80.9.0
|
| 87 |
+
six==1.17.0
|
| 88 |
+
sniffio==1.3.1
|
| 89 |
+
stack-data==0.6.3
|
| 90 |
+
sympy==1.14.0
|
| 91 |
+
tokenizers==0.22.1
|
| 92 |
+
torch==2.9.0
|
| 93 |
+
tornado==6.5.2
|
| 94 |
+
tqdm==4.67.1
|
| 95 |
+
traitlets==5.14.3
|
| 96 |
+
transformers==4.57.1
|
| 97 |
+
triton==3.5.0
|
| 98 |
+
typing_extensions==4.15.0
|
| 99 |
+
tzdata==2025.2
|
| 100 |
+
urllib3==2.5.0
|
| 101 |
+
wcwidth==0.2.14
|
| 102 |
+
xxhash==3.6.0
|
| 103 |
+
yarl==1.22.0
|
train_labels.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
train_text.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|