Spaces:
Sleeping
Sleeping
File size: 12,139 Bytes
65cc576 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import os
import torch
import torch.nn as nn
from transformers import AutoModel, GPT2Tokenizer
from utils.modifiedGPT2 import create_decoder
from utils.layer_mask import gaussian_layer_stack_pipeline
class DINOEncoder(nn.Module):
def __init__(self, model_id="facebook/dinov3-vits16-pretrain-lvd1689m", freeze=True):
super().__init__()
self.model = AutoModel.from_pretrained(model_id)
if freeze:
for p in self.model.parameters():
p.requires_grad = False
@torch.no_grad()
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
pixel_values: [B, C, H, W]
returns patches: [B, Np, Cenc]
"""
out = self.model(pixel_values=pixel_values)
tokens = out.last_hidden_state # [B, 1+Np, Cenc] (CLS + patches) for ViT-like
# Skip a few special tokens if your backbone adds them; adjust as needed.
patches = tokens[:, 5:, :] # [B, Np, Cenc]
return patches
class DinoUNet(nn.Module):
def __init__(self, model_name="facebook/dinov3-convnext-small-pretrain-lvd1689m", freeze=True):
super().__init__()
self.encoder = AutoModel.from_pretrained(model_name)
# NOTE: confirm channels of the chosen hidden state; 768 is common for small convnext/dinov3
self.channel_adapter = nn.Conv2d(768, 512, kernel_size=1)
self.decoder = nn.Sequential(
nn.Conv2d(512, 256, 3, padding=1), nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, 2, stride=2), nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, 2, stride=2), nn.ReLU(inplace=True),
nn.Conv2d(64, 1, 1)
)
if freeze:
for m in (self.encoder, self.channel_adapter, self.decoder):
for p in m.parameters():
p.requires_grad = False
@torch.no_grad()
def forward(self, x: torch.Tensor, num_layers: int) -> torch.Tensor:
"""
x: [B, C, H, W]; returns mask: [B, 1, H', W'] (your upsampling stack defines H',W')
"""
enc_feats = self.encoder(x, output_hidden_states=True, return_dict=True)
# take the last 4D feature map from hidden_states
feats = next(h for h in reversed(enc_feats.hidden_states) if isinstance(h, torch.Tensor) and h.ndim == 4)
feats = self.channel_adapter(feats)
pred = self.decoder(feats) # (B,1,h,w)
_, _, segmentation_mask = gaussian_layer_stack_pipeline(pred, n_layers = num_layers)
return segmentation_mask # [B, num_layers, h, w]
class LinearProjection(nn.Module):
def __init__(self, input_dim=384, output_dim=768, freeze=False):
super().__init__()
self.proj = nn.Linear(input_dim, output_dim)
if freeze:
for p in self.proj.parameters():
p.requires_grad = False
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: [B, Np, input_dim] -> [B, Np, output_dim]
return self.proj(x)
class CustomModel(nn.Module):
def __init__(
self,
device: str = "cuda",
ENCODER_MODEL_PATH: str | None = "dino_encoder.pth",
SEGMENTER_MODEL_PATH: str | None = "dino_segmenter.pth",
DECODER_MODEL_PATH: str | None = "dino_decoder.pth",
LINEAR_PROJECTION_PATH: str | None = "linear_projection.pth",
freeze_encoder: bool = True,
freeze_segmenter: bool = True,
freeze_linear_projection: bool = False,
freeze_decoder: bool = False,
attention_implementation: str = "sdpa",
):
super().__init__()
self.device = torch.device(device)
# Encoder
self.encoder = DINOEncoder()
if ENCODER_MODEL_PATH and os.path.exists(ENCODER_MODEL_PATH):
self.encoder.load_state_dict(torch.load(ENCODER_MODEL_PATH, map_location="cpu"), strict=False)
print("Loaded encoder weights from", ENCODER_MODEL_PATH)
if freeze_encoder:
self.encoder.eval()
# Segmenter
self.segmenter = DinoUNet()
if SEGMENTER_MODEL_PATH and os.path.exists(SEGMENTER_MODEL_PATH):
self.segmenter.load_state_dict(torch.load(SEGMENTER_MODEL_PATH, map_location="cpu"), strict=False)
print("Loaded segmenter weights from", SEGMENTER_MODEL_PATH)
if freeze_segmenter:
self.segmenter.eval()
# Decoder (modified GPT-2)
self.decoder = create_decoder(attention=attention_implementation) # must expose .config.hidden_size & .config.num_hidden_layers
if DECODER_MODEL_PATH and os.path.exists(DECODER_MODEL_PATH):
self.decoder.load_state_dict(torch.load(DECODER_MODEL_PATH, map_location="cpu"), strict=False)
print("Loaded decoder weights from", DECODER_MODEL_PATH)
if freeze_decoder:
self.decoder.eval()
# Linear projection: DINO hidden -> GPT2 hidden
enc_h = self.encoder.model.config.hidden_size
dec_h = self.decoder.config.hidden_size
self.linear_projection = LinearProjection(input_dim=enc_h, output_dim=dec_h)
if LINEAR_PROJECTION_PATH and os.path.exists(LINEAR_PROJECTION_PATH):
self.linear_projection.load_state_dict(torch.load(LINEAR_PROJECTION_PATH, map_location="cpu"), strict=False)
print("Loaded linear projection weights from", LINEAR_PROJECTION_PATH)
if freeze_linear_projection:
self.linear_projection.eval()
# Tokenizer (pad token for GPT-2)
self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
if self.tokenizer.pad_token_id is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.pad_token_id = self.tokenizer.pad_token_id # ✅ use ID, not string
self.num_layers = self.decoder.config.num_hidden_layers
# move everything once
self.to(self.device)
def forward(self, pixel_values: torch.Tensor, tgt_ids: torch.Tensor | None = None, **kwargs) -> dict:
"""
pixel_values: [B,C,H,W], float
tgt_ids: [B,T], long (token IDs), padded with pad_token_id if any padding is present
"""
pixel_values = pixel_values.to(self.device, non_blocking=True)
# Visual path
patches = self.encoder(pixel_values) # [B,Np,Cenc]
projected_patches = self.linear_projection(patches) # [B,Np,n_embd]
# Segmentation path per layer
segmented_layers = self.segmenter(pixel_values, self.num_layers) # [B,n_layers,H,W] (per current decoder)
# Text path (optional teacher-forced training)
labels = None
if tgt_ids is not None:
if tgt_ids.dtype != torch.long:
tgt_ids = tgt_ids.long()
tgt_ids = tgt_ids.to(self.device, non_blocking=True) # [B,T]
text_embeds = self.decoder.transformer.wte(tgt_ids) # [B,T,n_embd]
inputs_embeds = torch.cat([projected_patches, text_embeds], dim=1) # [B,Np+T,n_embd]
# Labels: ignore prefix tokens (vision) and PADs in text
B, Np, _ = projected_patches.shape
labels_prefix = torch.full((B, Np), -100, device=self.device, dtype=torch.long)
text_labels = tgt_ids.clone()
text_labels[text_labels == self.pad_token_id] = -100 # ✅ compare to ID
labels = torch.cat([labels_prefix, text_labels], dim=1) # [B,Np+T]
else:
inputs_embeds = projected_patches
# Decoder forward
out = self.decoder(inputs_embeds=inputs_embeds, segmentation_mask=segmented_layers, labels=labels, **kwargs)
return out
@torch.inference_mode()
def generate(
self,
pixel_values: torch.Tensor,
max_new_tokens: int = 100,
output_attentions: bool = False,
) -> torch.Tensor:
"""
pixel_values: [B,C,H,W], float
returns generated_ids: [B, T]
"""
pixel_values = pixel_values.to(self.device, non_blocking=True)
# Visual path
patches = self.encoder(pixel_values) # [B,Np,Cenc]
projected_patches = self.linear_projection(patches) # [B,Np,n_embd]
# Segmentation path per layer
segmented_layers = self.segmenter(pixel_values, self.num_layers) # [B,n_layers,H,W] (per current decoder)
# Generate
output = self.decoder.generate(
inputs_embeds=projected_patches,
max_new_tokens=max_new_tokens,
do_sample=False,
repetition_penalty=1.2,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.pad_token_id,
use_cache=True,
segmentation_mask=segmented_layers,
prefix_allowed_length=0,
plot_attention_mask=False,
plot_attention_mask_layer=[],
plot_attention_map=False,
plot_attention_map_layer=[],
plot_attention_map_generation=0,
output_attentions=output_attentions,
return_dict_in_generate=True,
)
# Remove prefix tokens (vision)
generated_ids = output.sequences#[:, projected_patches.shape[1]:] # [B,T]
generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
return generated_ids, generated_text, output.attentions if output_attentions else None
def create_complete_model(device: str = "cuda", **kwargs) -> CustomModel:
model = CustomModel(device=device, **kwargs)
return model
def save_complete_model(model: CustomModel, save_path: str, device: str = "cuda") -> None:
# Ensure folder exists
os.makedirs(os.path.dirname(save_path) or ".", exist_ok=True)
# Save on CPU to keep checkpoint portable
orig_device = next(model.parameters()).device
model.to("cpu")
torch.save(model.state_dict(), save_path)
print(f"Saved complete model weights to {save_path}")
# Restore model device
model.to(device if isinstance(device, str) else orig_device)
def save_checkpoint(model: CustomModel, optimizer: torch.optim.Optimizer, save_path: str) -> None:
# Ensure folder exists
os.makedirs(os.path.dirname(save_path) or ".", exist_ok=True)
checkpoint = {
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
}
torch.save(checkpoint, save_path)
print(f"Saved checkpoint to {save_path}")
def load_complete_model(model: CustomModel, load_path: str, device: str = "cpu", strict: bool = True) -> CustomModel:
if not os.path.exists(load_path):
print(f"No weights found at {load_path}")
model.to(device)
return model
# Load to CPU first, then move to target device
state = torch.load(load_path, map_location="cpu")
missing, unexpected = model.load_state_dict(state, strict=strict)
if not strict:
if missing:
print(f"[load warning] Missing keys: {missing}")
if unexpected:
print(f"[load warning] Unexpected keys: {unexpected}")
model.to(device)
print(f"Loaded complete model weights from {load_path}")
return model
def load_checkpoint(model: CustomModel, optimizer: torch.optim.Optimizer, load_path: str, device: str = "cpu") -> tuple[CustomModel, torch.optim.Optimizer]:
if not os.path.exists(load_path):
print(f"No checkpoint found at {load_path}")
model.to(device)
return model, optimizer
# Load to CPU first, then move to target device
checkpoint = torch.load(load_path, map_location="cpu")
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
model.to(device)
print(f"Loaded checkpoint from {load_path}")
return model, optimizer |