Spaces:
Sleeping
Sleeping
Update utils/layer_mask.py
Browse files- utils/layer_mask.py +224 -224
utils/layer_mask.py
CHANGED
|
@@ -1,224 +1,224 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn.functional as F
|
| 3 |
-
import math
|
| 4 |
-
import numpy as np
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
-
|
| 7 |
-
@torch.no_grad()
|
| 8 |
-
def gaussian_layer_stack_pipeline(
|
| 9 |
-
x: torch.Tensor,
|
| 10 |
-
n_layers: int,
|
| 11 |
-
base_ksize: int = 3,
|
| 12 |
-
ksize_growth: int = 2,
|
| 13 |
-
sigma: float | None = None,
|
| 14 |
-
eps: float = 1e-8,
|
| 15 |
-
):
|
| 16 |
-
"""
|
| 17 |
-
All-in-one GPU batch pipeline:
|
| 18 |
-
1) Per-sample min-max normalize to [0,1]
|
| 19 |
-
2) Resize to (32,32)
|
| 20 |
-
3) Apply L Gaussian blurs with increasing kernel size in a single
|
| 21 |
-
horizontal conv + single vertical conv using depthwise groups
|
| 22 |
-
(via a shared max kernel padded with zeros)
|
| 23 |
-
4) Renormalize each layer to [0,1]
|
| 24 |
-
5) Return stacked (B,L,32,32), flat (B,L,1024), tiled (B,L,1024,1024 view)
|
| 25 |
-
|
| 26 |
-
Args:
|
| 27 |
-
x: (B,H,W) or (B,1,H,W) tensor (any device/dtype)
|
| 28 |
-
n_layers: number of layers
|
| 29 |
-
base_ksize: starting odd kernel size (e.g., 3)
|
| 30 |
-
ksize_growth: increment per layer (e.g., 2) -> ensures odd sizes
|
| 31 |
-
sigma: if None, uses (ksize-1)/6 per layer; else fixed sigma for all
|
| 32 |
-
eps: small number for safe division
|
| 33 |
-
|
| 34 |
-
Returns:
|
| 35 |
-
stacked: (B, n_layers, 32, 32) float on x.device
|
| 36 |
-
flat: (B, n_layers, 1024)
|
| 37 |
-
tiled: (B, n_layers, 1024, 1024) (expand view; memory-cheap)
|
| 38 |
-
"""
|
| 39 |
-
assert n_layers >= 1, "n_layers must be >= 1"
|
| 40 |
-
|
| 41 |
-
# ---- Ensure 4D, 1 channel; cast to float (stay on same device) ----
|
| 42 |
-
if x.ndim == 3:
|
| 43 |
-
x = x.unsqueeze(1) # (B,1,H,W)
|
| 44 |
-
elif x.ndim != 4 or x.shape[1] not in (1,):
|
| 45 |
-
raise ValueError(f"Expected (B,H,W) or (B,1,H,W); got {tuple(x.shape)}")
|
| 46 |
-
x = x.float()
|
| 47 |
-
|
| 48 |
-
B, _, H, W = x.shape
|
| 49 |
-
|
| 50 |
-
# ---- Per-sample min-max normalize to [0,1] ----
|
| 51 |
-
xmin = x.amin(dim=(2, 3), keepdim=True)
|
| 52 |
-
xmax = x.amax(dim=(2, 3), keepdim=True)
|
| 53 |
-
denom = (xmax - xmin).clamp_min(eps)
|
| 54 |
-
x = (x - xmin) / denom # (B,1,H,W) in [0,1]
|
| 55 |
-
|
| 56 |
-
# ---- Resize to 32x32 on GPU ----
|
| 57 |
-
x = F.interpolate(x, size=(32, 32), mode="bilinear", align_corners=False) # (B,1,32,32)
|
| 58 |
-
|
| 59 |
-
# ---- Prepare per-layer kernel sizes (odd) ----
|
| 60 |
-
ksizes = []
|
| 61 |
-
for i in range(n_layers, 0, -1): # to keep your original ordering: L...1
|
| 62 |
-
k = base_ksize + i * ksize_growth
|
| 63 |
-
k = int(k)
|
| 64 |
-
if k % 2 == 0:
|
| 65 |
-
k += 1
|
| 66 |
-
k = max(k, 1)
|
| 67 |
-
ksizes.append(k)
|
| 68 |
-
|
| 69 |
-
Kmax = max(ksizes)
|
| 70 |
-
pad = Kmax // 2
|
| 71 |
-
|
| 72 |
-
# ---- Build per-layer 1D Gaussian vectors and embed into shared Kmax kernel ----
|
| 73 |
-
# We create horizontal weights of shape (L,1,1,Kmax) and vertical (L,1,Kmax,1)
|
| 74 |
-
device, dtype = x.device, x.dtype
|
| 75 |
-
weight_h = torch.zeros((n_layers, 1, 1, Kmax), device=device, dtype=dtype)
|
| 76 |
-
weight_v = torch.zeros((n_layers, 1, Kmax, 1), device=device, dtype=dtype)
|
| 77 |
-
|
| 78 |
-
for idx, k in enumerate(ksizes):
|
| 79 |
-
# choose sigma
|
| 80 |
-
sig = sigma if (sigma is not None and sigma > 0) else (k - 1) / 6.0
|
| 81 |
-
r = k // 2
|
| 82 |
-
xp = torch.arange(-r, r + 1, device=device, dtype=dtype)
|
| 83 |
-
g = torch.exp(-(xp * xp) / (2.0 * sig * sig))
|
| 84 |
-
g = g / g.sum() # (k,)
|
| 85 |
-
|
| 86 |
-
# center g into Kmax with zeros around
|
| 87 |
-
start = (Kmax - k) // 2
|
| 88 |
-
end = start + k
|
| 89 |
-
|
| 90 |
-
# horizontal row
|
| 91 |
-
weight_h[idx, 0, 0, start:end] = g # (1 x Kmax)
|
| 92 |
-
|
| 93 |
-
# vertical column
|
| 94 |
-
weight_v[idx, 0, start:end, 0] = g # (Kmax x 1)
|
| 95 |
-
|
| 96 |
-
# ---- Duplicate input across L channels (depthwise groups) ----
|
| 97 |
-
xL = x.expand(B, n_layers, 32, 32).contiguous() # (B,L,32,32)
|
| 98 |
-
|
| 99 |
-
# ---- Separable Gaussian blur with a single pass per axis (groups=L) ----
|
| 100 |
-
# Horizontal
|
| 101 |
-
xh = F.pad(xL, (pad, pad, 0, 0), mode="reflect")
|
| 102 |
-
xh = F.conv2d(xh, weight=weight_h, bias=None, stride=1, padding=0, groups=n_layers) # (B,L,32,32)
|
| 103 |
-
|
| 104 |
-
# Vertical
|
| 105 |
-
xv = F.pad(xh, (0, 0, pad, pad), mode="reflect")
|
| 106 |
-
yL = F.conv2d(xv, weight=weight_v, bias=None, stride=1, padding=0, groups=n_layers) # (B,L,32,32)
|
| 107 |
-
|
| 108 |
-
# ---- Renormalize each layer to [0,1] (per-sample, per-layer) ----
|
| 109 |
-
y_min = yL.amin(dim=(2, 3), keepdim=True)
|
| 110 |
-
y_max = yL.amax(dim=(2, 3), keepdim=True)
|
| 111 |
-
y_den = (y_max - y_min).clamp_min(eps)
|
| 112 |
-
stacked = (yL - y_min) / y_den # (B,L,32,32) in [0,1]
|
| 113 |
-
|
| 114 |
-
# ---- Flatten + tile (expand view; caution w/ later materialization) ----
|
| 115 |
-
flat = stacked.reshape(B, n_layers, 32 * 32) # (B,L,1024)
|
| 116 |
-
tiled = flat.unsqueeze(-2).expand(-1, -1, 32 * 32, -1) # (B,L,1024,1024) view
|
| 117 |
-
|
| 118 |
-
return stacked, flat, tiled
|
| 119 |
-
|
| 120 |
-
def plot_layers_any(
|
| 121 |
-
x,
|
| 122 |
-
*,
|
| 123 |
-
max_batches=None,
|
| 124 |
-
vlim=(0, 1),
|
| 125 |
-
one_indexed: bool = False,
|
| 126 |
-
max_cols: int = 6,
|
| 127 |
-
):
|
| 128 |
-
"""
|
| 129 |
-
Plot layers for each batch sample in separate figures.
|
| 130 |
-
|
| 131 |
-
Accepts:
|
| 132 |
-
- stacked: (B, L, H, W)
|
| 133 |
-
- flat: (B, L, HW)
|
| 134 |
-
- tiled: (B, L, HW, HW)
|
| 135 |
-
|
| 136 |
-
Behavior:
|
| 137 |
-
- Creates one figure PER BATCH (up to `max_batches`).
|
| 138 |
-
- At most `max_cols` layers per row (default 6).
|
| 139 |
-
- Column headers: 'Layer {i}' descending from n-1 -> 0 (or n -> 1 if one_indexed=True).
|
| 140 |
-
- Figure title per batch: 'Masks for input {i} out of {B}'.
|
| 141 |
-
|
| 142 |
-
Returns:
|
| 143 |
-
A list of (fig, axes) tuples, one per plotted batch.
|
| 144 |
-
"""
|
| 145 |
-
# ---- Normalize input to torch ----
|
| 146 |
-
if isinstance(x, np.ndarray):
|
| 147 |
-
x = torch.from_numpy(x)
|
| 148 |
-
if not isinstance(x, torch.Tensor):
|
| 149 |
-
raise TypeError(f"Expected torch.Tensor or np.ndarray, got {type(x)}")
|
| 150 |
-
|
| 151 |
-
if x.ndim not in (3, 4):
|
| 152 |
-
raise ValueError(f"Expected ndim 3 or 4, got shape {tuple(x.shape)}")
|
| 153 |
-
|
| 154 |
-
# ---- Convert to (B, L, H, W) 'stacked' ----
|
| 155 |
-
if x.ndim == 4:
|
| 156 |
-
B, L, A, B_ = x.shape
|
| 157 |
-
if A == B_:
|
| 158 |
-
# Could be stacked (H==W) or tiled (HW x HW). Heuristic: if A is a perfect square
|
| 159 |
-
# and reasonably large (e.g., 1024), treat as tiled and collapse to flat.
|
| 160 |
-
s = int(math.isqrt(A))
|
| 161 |
-
if s * s == A and A >= 64:
|
| 162 |
-
flat = x[..., 0, :].detach() # (B, L, HW)
|
| 163 |
-
H = W = s
|
| 164 |
-
stacked = flat.reshape(B, L, H, W)
|
| 165 |
-
else:
|
| 166 |
-
stacked = x.detach()
|
| 167 |
-
else:
|
| 168 |
-
stacked = x.detach()
|
| 169 |
-
else:
|
| 170 |
-
# x.ndim == 3 -> (B, L, HW)
|
| 171 |
-
B, L, HW = x.shape
|
| 172 |
-
s = int(math.isqrt(HW))
|
| 173 |
-
if s * s != HW:
|
| 174 |
-
if HW != 32 * 32:
|
| 175 |
-
raise ValueError(
|
| 176 |
-
f"Cannot infer square image size from HW={HW}. "
|
| 177 |
-
f"Provide stacked (B,L,H,W) or flat with square HW."
|
| 178 |
-
)
|
| 179 |
-
s = 32
|
| 180 |
-
H = W = s
|
| 181 |
-
stacked = x.detach().reshape(B, L, H, W)
|
| 182 |
-
|
| 183 |
-
# Ensure float & CPU for plotting
|
| 184 |
-
stacked = stacked.to(torch.float32).cpu().numpy()
|
| 185 |
-
|
| 186 |
-
# ---- Batch selection ----
|
| 187 |
-
B, L, H, W = stacked.shape
|
| 188 |
-
plot_B = B if max_batches is None else max(1, min(B, int(max_batches)))
|
| 189 |
-
|
| 190 |
-
# ---- Layout params ----
|
| 191 |
-
cols = max(1, int(max_cols))
|
| 192 |
-
rows_needed = lambda L: (L + cols - 1) // cols
|
| 193 |
-
|
| 194 |
-
figs = []
|
| 195 |
-
for b in range(plot_B):
|
| 196 |
-
# number of rows for this batch
|
| 197 |
-
r = rows_needed(L)
|
| 198 |
-
fig, axes = plt.subplots(r, cols, figsize=(cols * 3, r * 3), squeeze=False)
|
| 199 |
-
fig.suptitle(f"Masks for input {b} out of {B}", fontsize=12, y=1.02)
|
| 200 |
-
|
| 201 |
-
for l in range(L):
|
| 202 |
-
rr = l // cols
|
| 203 |
-
cc = l % cols
|
| 204 |
-
ax = axes[rr, cc]
|
| 205 |
-
if vlim is None:
|
| 206 |
-
ax.imshow(stacked[b, l], cmap="gray")
|
| 207 |
-
else:
|
| 208 |
-
ax.imshow(stacked[b, l], cmap="gray", vmin=vlim[0], vmax=vlim[1])
|
| 209 |
-
ax.axis("off")
|
| 210 |
-
|
| 211 |
-
# Set column titles only on the first row of the grid
|
| 212 |
-
label_num = (l + 1) if one_indexed else l
|
| 213 |
-
ax.set_title(f"Layer {label_num}", fontsize=10)
|
| 214 |
-
|
| 215 |
-
# Hide any unused axes (when L is not a multiple of cols)
|
| 216 |
-
total_slots = r * cols
|
| 217 |
-
for empty_idx in range(L, total_slots):
|
| 218 |
-
rr = empty_idx // cols
|
| 219 |
-
cc = empty_idx % cols
|
| 220 |
-
axes[rr, cc].axis("off")
|
| 221 |
-
|
| 222 |
-
plt.tight_layout()
|
| 223 |
-
figs.append((fig, axes))
|
| 224 |
-
return figs
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import math
|
| 4 |
+
import numpy as np
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
|
| 7 |
+
@torch.no_grad()
|
| 8 |
+
def gaussian_layer_stack_pipeline(
|
| 9 |
+
x: torch.Tensor,
|
| 10 |
+
n_layers: int,
|
| 11 |
+
base_ksize: int = 3,
|
| 12 |
+
ksize_growth: int = 2,
|
| 13 |
+
sigma: float | None = None,
|
| 14 |
+
eps: float = 1e-8,
|
| 15 |
+
):
|
| 16 |
+
"""
|
| 17 |
+
All-in-one GPU batch pipeline:
|
| 18 |
+
1) Per-sample min-max normalize to [0,1]
|
| 19 |
+
2) Resize to (32,32)
|
| 20 |
+
3) Apply L Gaussian blurs with increasing kernel size in a single
|
| 21 |
+
horizontal conv + single vertical conv using depthwise groups
|
| 22 |
+
(via a shared max kernel padded with zeros)
|
| 23 |
+
4) Renormalize each layer to [0,1]
|
| 24 |
+
5) Return stacked (B,L,32,32), flat (B,L,1024), tiled (B,L,1024,1024 view)
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
x: (B,H,W) or (B,1,H,W) tensor (any device/dtype)
|
| 28 |
+
n_layers: number of layers
|
| 29 |
+
base_ksize: starting odd kernel size (e.g., 3)
|
| 30 |
+
ksize_growth: increment per layer (e.g., 2) -> ensures odd sizes
|
| 31 |
+
sigma: if None, uses (ksize-1)/6 per layer; else fixed sigma for all
|
| 32 |
+
eps: small number for safe division
|
| 33 |
+
|
| 34 |
+
Returns:
|
| 35 |
+
stacked: (B, n_layers, 32, 32) float on x.device
|
| 36 |
+
flat: (B, n_layers, 1024)
|
| 37 |
+
tiled: (B, n_layers, 1024, 1024) (expand view; memory-cheap)
|
| 38 |
+
"""
|
| 39 |
+
assert n_layers >= 1, "n_layers must be >= 1"
|
| 40 |
+
|
| 41 |
+
# ---- Ensure 4D, 1 channel; cast to float (stay on same device) ----
|
| 42 |
+
if x.ndim == 3:
|
| 43 |
+
x = x.unsqueeze(1) # (B,1,H,W)
|
| 44 |
+
elif x.ndim != 4 or x.shape[1] not in (1,):
|
| 45 |
+
raise ValueError(f"Expected (B,H,W) or (B,1,H,W); got {tuple(x.shape)}")
|
| 46 |
+
x = x.float()
|
| 47 |
+
|
| 48 |
+
B, _, H, W = x.shape
|
| 49 |
+
|
| 50 |
+
# ---- Per-sample min-max normalize to [0,1] ----
|
| 51 |
+
xmin = x.amin(dim=(2, 3), keepdim=True)
|
| 52 |
+
xmax = x.amax(dim=(2, 3), keepdim=True)
|
| 53 |
+
denom = (xmax - xmin).clamp_min(eps)
|
| 54 |
+
x = (x - xmin) / denom # (B,1,H,W) in [0,1]
|
| 55 |
+
|
| 56 |
+
# ---- Resize to 32x32 on GPU ----
|
| 57 |
+
x = F.interpolate(x, size=(32, 32), mode="bilinear", align_corners=False) # (B,1,32,32)
|
| 58 |
+
|
| 59 |
+
# ---- Prepare per-layer kernel sizes (odd) ----
|
| 60 |
+
ksizes = []
|
| 61 |
+
for i in range(n_layers, 0, -1): # to keep your original ordering: L...1
|
| 62 |
+
k = base_ksize + i * ksize_growth
|
| 63 |
+
k = int(k)
|
| 64 |
+
if k % 2 == 0:
|
| 65 |
+
k += 1
|
| 66 |
+
k = max(k, 1)
|
| 67 |
+
ksizes.append(k)
|
| 68 |
+
|
| 69 |
+
Kmax = max(ksizes)
|
| 70 |
+
pad = Kmax // 2
|
| 71 |
+
|
| 72 |
+
# ---- Build per-layer 1D Gaussian vectors and embed into shared Kmax kernel ----
|
| 73 |
+
# We create horizontal weights of shape (L,1,1,Kmax) and vertical (L,1,Kmax,1)
|
| 74 |
+
device, dtype = x.device, x.dtype
|
| 75 |
+
weight_h = torch.zeros((n_layers, 1, 1, Kmax), device=device, dtype=dtype)
|
| 76 |
+
weight_v = torch.zeros((n_layers, 1, Kmax, 1), device=device, dtype=dtype)
|
| 77 |
+
|
| 78 |
+
for idx, k in enumerate(ksizes):
|
| 79 |
+
# choose sigma
|
| 80 |
+
sig = sigma if (sigma is not None and sigma > 0) else (k - 1) / 6.0
|
| 81 |
+
r = k // 2
|
| 82 |
+
xp = torch.arange(-r, r + 1, device=device, dtype=dtype)
|
| 83 |
+
g = torch.exp(-(xp * xp) / (2.0 * sig * sig))
|
| 84 |
+
g = g / g.sum() # (k,)
|
| 85 |
+
|
| 86 |
+
# center g into Kmax with zeros around
|
| 87 |
+
start = (Kmax - k) // 2
|
| 88 |
+
end = start + k
|
| 89 |
+
|
| 90 |
+
# horizontal row
|
| 91 |
+
weight_h[idx, 0, 0, start:end] = g # (1 x Kmax)
|
| 92 |
+
|
| 93 |
+
# vertical column
|
| 94 |
+
weight_v[idx, 0, start:end, 0] = g # (Kmax x 1)
|
| 95 |
+
|
| 96 |
+
# ---- Duplicate input across L channels (depthwise groups) ----
|
| 97 |
+
xL = x.expand(B, n_layers, 32, 32).contiguous() # (B,L,32,32)
|
| 98 |
+
|
| 99 |
+
# ---- Separable Gaussian blur with a single pass per axis (groups=L) ----
|
| 100 |
+
# Horizontal
|
| 101 |
+
xh = F.pad(xL, (pad, pad, 0, 0), mode="reflect")
|
| 102 |
+
xh = F.conv2d(xh, weight=weight_h, bias=None, stride=1, padding=0, groups=n_layers) # (B,L,32,32)
|
| 103 |
+
|
| 104 |
+
# Vertical
|
| 105 |
+
xv = F.pad(xh, (0, 0, pad, pad), mode="reflect")
|
| 106 |
+
yL = F.conv2d(xv, weight=weight_v, bias=None, stride=1, padding=0, groups=n_layers) # (B,L,32,32)
|
| 107 |
+
|
| 108 |
+
# ---- Renormalize each layer to [0,1] (per-sample, per-layer) ----
|
| 109 |
+
y_min = yL.amin(dim=(2, 3), keepdim=True)
|
| 110 |
+
y_max = yL.amax(dim=(2, 3), keepdim=True)
|
| 111 |
+
y_den = (y_max - y_min).clamp_min(eps)
|
| 112 |
+
stacked = (yL - y_min) / y_den # (B,L,32,32) in [0,1]
|
| 113 |
+
|
| 114 |
+
# ---- Flatten + tile (expand view; caution w/ later materialization) ----
|
| 115 |
+
flat = stacked.reshape(B, n_layers, 32 * 32) # (B,L,1024)
|
| 116 |
+
tiled = flat.unsqueeze(-2).expand(-1, -1, 2 * 32 * 32, -1) # (B,L,1024,1024) view
|
| 117 |
+
|
| 118 |
+
return stacked, flat, tiled
|
| 119 |
+
|
| 120 |
+
def plot_layers_any(
|
| 121 |
+
x,
|
| 122 |
+
*,
|
| 123 |
+
max_batches=None,
|
| 124 |
+
vlim=(0, 1),
|
| 125 |
+
one_indexed: bool = False,
|
| 126 |
+
max_cols: int = 6,
|
| 127 |
+
):
|
| 128 |
+
"""
|
| 129 |
+
Plot layers for each batch sample in separate figures.
|
| 130 |
+
|
| 131 |
+
Accepts:
|
| 132 |
+
- stacked: (B, L, H, W)
|
| 133 |
+
- flat: (B, L, HW)
|
| 134 |
+
- tiled: (B, L, HW, HW)
|
| 135 |
+
|
| 136 |
+
Behavior:
|
| 137 |
+
- Creates one figure PER BATCH (up to `max_batches`).
|
| 138 |
+
- At most `max_cols` layers per row (default 6).
|
| 139 |
+
- Column headers: 'Layer {i}' descending from n-1 -> 0 (or n -> 1 if one_indexed=True).
|
| 140 |
+
- Figure title per batch: 'Masks for input {i} out of {B}'.
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
A list of (fig, axes) tuples, one per plotted batch.
|
| 144 |
+
"""
|
| 145 |
+
# ---- Normalize input to torch ----
|
| 146 |
+
if isinstance(x, np.ndarray):
|
| 147 |
+
x = torch.from_numpy(x)
|
| 148 |
+
if not isinstance(x, torch.Tensor):
|
| 149 |
+
raise TypeError(f"Expected torch.Tensor or np.ndarray, got {type(x)}")
|
| 150 |
+
|
| 151 |
+
if x.ndim not in (3, 4):
|
| 152 |
+
raise ValueError(f"Expected ndim 3 or 4, got shape {tuple(x.shape)}")
|
| 153 |
+
|
| 154 |
+
# ---- Convert to (B, L, H, W) 'stacked' ----
|
| 155 |
+
if x.ndim == 4:
|
| 156 |
+
B, L, A, B_ = x.shape
|
| 157 |
+
if A == B_:
|
| 158 |
+
# Could be stacked (H==W) or tiled (HW x HW). Heuristic: if A is a perfect square
|
| 159 |
+
# and reasonably large (e.g., 1024), treat as tiled and collapse to flat.
|
| 160 |
+
s = int(math.isqrt(A))
|
| 161 |
+
if s * s == A and A >= 64:
|
| 162 |
+
flat = x[..., 0, :].detach() # (B, L, HW)
|
| 163 |
+
H = W = s
|
| 164 |
+
stacked = flat.reshape(B, L, H, W)
|
| 165 |
+
else:
|
| 166 |
+
stacked = x.detach()
|
| 167 |
+
else:
|
| 168 |
+
stacked = x.detach()
|
| 169 |
+
else:
|
| 170 |
+
# x.ndim == 3 -> (B, L, HW)
|
| 171 |
+
B, L, HW = x.shape
|
| 172 |
+
s = int(math.isqrt(HW))
|
| 173 |
+
if s * s != HW:
|
| 174 |
+
if HW != 32 * 32:
|
| 175 |
+
raise ValueError(
|
| 176 |
+
f"Cannot infer square image size from HW={HW}. "
|
| 177 |
+
f"Provide stacked (B,L,H,W) or flat with square HW."
|
| 178 |
+
)
|
| 179 |
+
s = 32
|
| 180 |
+
H = W = s
|
| 181 |
+
stacked = x.detach().reshape(B, L, H, W)
|
| 182 |
+
|
| 183 |
+
# Ensure float & CPU for plotting
|
| 184 |
+
stacked = stacked.to(torch.float32).cpu().numpy()
|
| 185 |
+
|
| 186 |
+
# ---- Batch selection ----
|
| 187 |
+
B, L, H, W = stacked.shape
|
| 188 |
+
plot_B = B if max_batches is None else max(1, min(B, int(max_batches)))
|
| 189 |
+
|
| 190 |
+
# ---- Layout params ----
|
| 191 |
+
cols = max(1, int(max_cols))
|
| 192 |
+
rows_needed = lambda L: (L + cols - 1) // cols
|
| 193 |
+
|
| 194 |
+
figs = []
|
| 195 |
+
for b in range(plot_B):
|
| 196 |
+
# number of rows for this batch
|
| 197 |
+
r = rows_needed(L)
|
| 198 |
+
fig, axes = plt.subplots(r, cols, figsize=(cols * 3, r * 3), squeeze=False)
|
| 199 |
+
fig.suptitle(f"Masks for input {b} out of {B}", fontsize=12, y=1.02)
|
| 200 |
+
|
| 201 |
+
for l in range(L):
|
| 202 |
+
rr = l // cols
|
| 203 |
+
cc = l % cols
|
| 204 |
+
ax = axes[rr, cc]
|
| 205 |
+
if vlim is None:
|
| 206 |
+
ax.imshow(stacked[b, l], cmap="gray")
|
| 207 |
+
else:
|
| 208 |
+
ax.imshow(stacked[b, l], cmap="gray", vmin=vlim[0], vmax=vlim[1])
|
| 209 |
+
ax.axis("off")
|
| 210 |
+
|
| 211 |
+
# Set column titles only on the first row of the grid
|
| 212 |
+
label_num = (l + 1) if one_indexed else l
|
| 213 |
+
ax.set_title(f"Layer {label_num}", fontsize=10)
|
| 214 |
+
|
| 215 |
+
# Hide any unused axes (when L is not a multiple of cols)
|
| 216 |
+
total_slots = r * cols
|
| 217 |
+
for empty_idx in range(L, total_slots):
|
| 218 |
+
rr = empty_idx // cols
|
| 219 |
+
cc = empty_idx % cols
|
| 220 |
+
axes[rr, cc].axis("off")
|
| 221 |
+
|
| 222 |
+
plt.tight_layout()
|
| 223 |
+
figs.append((fig, axes))
|
| 224 |
+
return figs
|