Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,631 +1,631 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
"""
|
| 3 |
-
🖼️→📝 Image-to-Text Attention Visualizer (Custom Model)
|
| 4 |
-
- Loads your custom model via create_complete_model()
|
| 5 |
-
- Accepts an image, applies your transform, then calls:
|
| 6 |
-
model.generate(pixel_values=..., max_new_tokens=..., output_attentions=True)
|
| 7 |
-
- Selector lists ONLY generated words (no prompt tokens).
|
| 8 |
-
- Viewer (single row) shows:
|
| 9 |
-
(1) original image,
|
| 10 |
-
(2) original + colored attention heatmap overlay,
|
| 11 |
-
(3) heatmap alone (colored).
|
| 12 |
-
- Heatmap is built from the first 1024 image tokens (32×32), then upscaled to the image size.
|
| 13 |
-
- Text block below shows word-level attention over generated tokens (no return_offsets_mapping used).
|
| 14 |
-
- Fixes deprecations: Matplotlib colormap API & Pillow mode inference.
|
| 15 |
-
"""
|
| 16 |
-
|
| 17 |
-
import os
|
| 18 |
-
import re
|
| 19 |
-
import random
|
| 20 |
-
from typing import List, Tuple, Optional
|
| 21 |
-
|
| 22 |
-
import gradio as gr
|
| 23 |
-
import torch
|
| 24 |
-
import numpy as np
|
| 25 |
-
from PIL import Image
|
| 26 |
-
from safetensors.torch import load_model
|
| 27 |
-
|
| 28 |
-
# Optional: nicer colormap (Matplotlib >=3.7 API; no deprecation warnings)
|
| 29 |
-
try:
|
| 30 |
-
import matplotlib as mpl
|
| 31 |
-
_HAS_MPL = True
|
| 32 |
-
_COLORMAP = mpl.colormaps.get_cmap("magma")
|
| 33 |
-
except Exception:
|
| 34 |
-
_HAS_MPL = False
|
| 35 |
-
_COLORMAP = None
|
| 36 |
-
|
| 37 |
-
# ========= Your utilities & model =========
|
| 38 |
-
from utils.processing import image_transform, pil_from_path
|
| 39 |
-
from utils.complete_model import create_complete_model
|
| 40 |
-
|
| 41 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 42 |
-
model = create_complete_model(device=DEVICE, attention_implementation="eager")
|
| 43 |
-
SAFETENSOR_PATH = "complete_model.safetensor"
|
| 44 |
-
try:
|
| 45 |
-
load_model(model, SAFETENSOR_PATH)
|
| 46 |
-
except Exception as e:
|
| 47 |
-
print(f"Error loading model: {e}, continuing with uninitialized weights.")
|
| 48 |
-
model.eval()
|
| 49 |
-
device = DEVICE
|
| 50 |
-
|
| 51 |
-
# --- Grab tokenizer from your model ---
|
| 52 |
-
tokenizer = getattr(model, "tokenizer", None)
|
| 53 |
-
if tokenizer is None:
|
| 54 |
-
raise ValueError("Expected `model.tokenizer` to exist and be a HF-like tokenizer.")
|
| 55 |
-
|
| 56 |
-
# --- Fix PAD/EOS ambiguity (and resize embeddings if applicable) ---
|
| 57 |
-
needs_resize = False
|
| 58 |
-
pad_id = getattr(tokenizer, "pad_token_id", None)
|
| 59 |
-
eos_id = getattr(tokenizer, "eos_token_id", None)
|
| 60 |
-
if pad_id is None or (eos_id is not None and pad_id == eos_id):
|
| 61 |
-
tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
|
| 62 |
-
needs_resize = True
|
| 63 |
-
|
| 64 |
-
# Try common resize hooks safely (only if your decoder actually uses tokenizer vocab)
|
| 65 |
-
if needs_resize:
|
| 66 |
-
resize_fns = [
|
| 67 |
-
getattr(getattr(model, "decoder", None), "resize_token_embeddings", None),
|
| 68 |
-
getattr(model, "resize_token_embeddings", None),
|
| 69 |
-
]
|
| 70 |
-
for fn in resize_fns:
|
| 71 |
-
if callable(fn):
|
| 72 |
-
try:
|
| 73 |
-
fn(len(tokenizer))
|
| 74 |
-
break
|
| 75 |
-
except Exception:
|
| 76 |
-
# If your model doesn't need resizing (separate vocab), it's fine.
|
| 77 |
-
pass
|
| 78 |
-
|
| 79 |
-
# ========= Regex for words (words + punctuation) =========
|
| 80 |
-
WORD_RE = re.compile(r"\w+(?:'\w+)?|[^\w\s]")
|
| 81 |
-
|
| 82 |
-
# ========= Model metadata (for slider ranges) =========
|
| 83 |
-
def model_heads_layers():
|
| 84 |
-
def _get(obj, *names, default=None):
|
| 85 |
-
for n in names:
|
| 86 |
-
if obj is None:
|
| 87 |
-
return default
|
| 88 |
-
if hasattr(obj, n):
|
| 89 |
-
try:
|
| 90 |
-
return int(getattr(obj, n))
|
| 91 |
-
except Exception:
|
| 92 |
-
return default
|
| 93 |
-
return default
|
| 94 |
-
|
| 95 |
-
cfg_candidates = [
|
| 96 |
-
getattr(model, "config", None),
|
| 97 |
-
getattr(getattr(model, "decoder", None), "config", None),
|
| 98 |
-
getattr(getattr(model, "lm_head", None), "config", None),
|
| 99 |
-
]
|
| 100 |
-
L = H = None
|
| 101 |
-
for cfg in cfg_candidates:
|
| 102 |
-
if L is None:
|
| 103 |
-
L = _get(cfg, "num_hidden_layers", "n_layer", default=None)
|
| 104 |
-
if H is None:
|
| 105 |
-
H = _get(cfg, "num_attention_heads", "n_head", default=None)
|
| 106 |
-
if L is None: L = 12
|
| 107 |
-
if H is None: H = 12
|
| 108 |
-
return max(1, L), max(1, H)
|
| 109 |
-
|
| 110 |
-
# ========= Attention utils =========
|
| 111 |
-
def get_attention_for_token_layer(
|
| 112 |
-
attentions,
|
| 113 |
-
token_index,
|
| 114 |
-
layer_index,
|
| 115 |
-
batch_index=0,
|
| 116 |
-
head_index=0,
|
| 117 |
-
mean_across_layers=True,
|
| 118 |
-
mean_across_heads=True,
|
| 119 |
-
):
|
| 120 |
-
"""
|
| 121 |
-
`attentions`:
|
| 122 |
-
tuple length = #generated tokens
|
| 123 |
-
attentions[t] -> tuple over layers; each layer tensor is (batch, heads, q, k)
|
| 124 |
-
"""
|
| 125 |
-
token_attention = attentions[token_index]
|
| 126 |
-
|
| 127 |
-
if mean_across_layers:
|
| 128 |
-
layer_attention = torch.stack(token_attention).mean(dim=0) # (batch, heads, q, k)
|
| 129 |
-
else:
|
| 130 |
-
layer_attention = token_attention[int(layer_index)] # (batch, heads, q, k)
|
| 131 |
-
|
| 132 |
-
batch_attention = layer_attention[int(batch_index)] # (heads, q, k)
|
| 133 |
-
|
| 134 |
-
if mean_across_heads:
|
| 135 |
-
head_attention = batch_attention.mean(dim=0) # (q, k)
|
| 136 |
-
else:
|
| 137 |
-
head_attention = batch_attention[int(head_index)] # (q, k)
|
| 138 |
-
|
| 139 |
-
return head_attention.squeeze(0) # q==1 -> (k,)
|
| 140 |
-
|
| 141 |
-
# ========= Tokens → words mapping (no offset_mapping needed) =========
|
| 142 |
-
def _words_and_map_from_tokens_simple(token_ids: List[int]) -> Tuple[List[str], List[int]]:
|
| 143 |
-
"""
|
| 144 |
-
Works with slow/fast tokenizers. No return_offsets_mapping.
|
| 145 |
-
Steps:
|
| 146 |
-
1) detok token_ids
|
| 147 |
-
2) regex-split words and get their char-end positions
|
| 148 |
-
3) for each word-end (we), encode detok[:we] w/ add_special_tokens=False
|
| 149 |
-
last token index = len(prefix_ids) - 1
|
| 150 |
-
"""
|
| 151 |
-
if not token_ids:
|
| 152 |
-
return [], []
|
| 153 |
-
|
| 154 |
-
toks = tokenizer.convert_ids_to_tokens(token_ids)
|
| 155 |
-
detok = tokenizer.convert_tokens_to_string(toks)
|
| 156 |
-
|
| 157 |
-
matches = list(re.finditer(WORD_RE, detok))
|
| 158 |
-
words = [m.group(0) for m in matches]
|
| 159 |
-
ends = [m.span()[1] for m in matches] # char end (exclusive)
|
| 160 |
-
|
| 161 |
-
word2tok: List[int] = []
|
| 162 |
-
for we in ends:
|
| 163 |
-
prefix_ids = tokenizer.encode(detok[:we], add_special_tokens=False)
|
| 164 |
-
if not prefix_ids:
|
| 165 |
-
word2tok.append(0)
|
| 166 |
-
continue
|
| 167 |
-
last_idx = len(prefix_ids) - 1
|
| 168 |
-
last_idx = max(0, min(last_idx, len(token_ids) - 1))
|
| 169 |
-
word2tok.append(last_idx)
|
| 170 |
-
|
| 171 |
-
return words, word2tok
|
| 172 |
-
|
| 173 |
-
def _strip_trailing_special(ids: List[int]) -> List[int]:
|
| 174 |
-
specials = set(getattr(tokenizer, "all_special_ids", []) or [])
|
| 175 |
-
j = len(ids)
|
| 176 |
-
while j > 0 and ids[j - 1] in specials:
|
| 177 |
-
j -= 1
|
| 178 |
-
return ids[:j]
|
| 179 |
-
|
| 180 |
-
# ========= Visualization (word-level for generated text) =========
|
| 181 |
-
def generate_word_visualization_gen_only(
|
| 182 |
-
words_gen: List[str],
|
| 183 |
-
word_ends_rel: List[int],
|
| 184 |
-
gen_attn_values: np.ndarray,
|
| 185 |
-
selected_token_rel_idx: int,
|
| 186 |
-
) -> str:
|
| 187 |
-
"""
|
| 188 |
-
words_gen: generated words only
|
| 189 |
-
word_ends_rel: last-token indices of each generated word (relative to generation)
|
| 190 |
-
gen_attn_values: length == len(gen_token_ids), attention over generated tokens only
|
| 191 |
-
(zeros for future tokens padded at the end)
|
| 192 |
-
"""
|
| 193 |
-
if not words_gen or gen_attn_values is None or len(gen_attn_values) == 0:
|
| 194 |
-
return (
|
| 195 |
-
"<div style='width:100%;'>"
|
| 196 |
-
" <div style='background:#444;border:1px solid #eee;border-radius:8px;padding:10px;'>"
|
| 197 |
-
" <div style='color:#ddd;'>No text attention values.</div>"
|
| 198 |
-
" </div>"
|
| 199 |
-
"</div>"
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
# compute word starts from ends (inclusive indexing)
|
| 203 |
-
starts = []
|
| 204 |
-
for i, end in enumerate(word_ends_rel):
|
| 205 |
-
if i == 0:
|
| 206 |
-
starts.append(0)
|
| 207 |
-
else:
|
| 208 |
-
starts.append(min(word_ends_rel[i - 1] + 1, end))
|
| 209 |
-
|
| 210 |
-
# sum attention per word
|
| 211 |
-
word_scores = []
|
| 212 |
-
T = len(gen_attn_values)
|
| 213 |
-
for i, end in enumerate(word_ends_rel):
|
| 214 |
-
start = starts[i]
|
| 215 |
-
if start > end:
|
| 216 |
-
start = end
|
| 217 |
-
s = max(0, min(start, T - 1))
|
| 218 |
-
e = max(0, min(end, T - 1))
|
| 219 |
-
if e < s:
|
| 220 |
-
s, e = e, s
|
| 221 |
-
word_scores.append(float(gen_attn_values[s:e + 1].sum()))
|
| 222 |
-
|
| 223 |
-
max_attn = max(0.1, float(max(word_scores)) if word_scores else 0.0)
|
| 224 |
-
|
| 225 |
-
# find selected word (contains selected token idx)
|
| 226 |
-
selected_word_idx = None
|
| 227 |
-
for i, end in enumerate(word_ends_rel):
|
| 228 |
-
if selected_token_rel_idx <= end:
|
| 229 |
-
selected_word_idx = i
|
| 230 |
-
break
|
| 231 |
-
if selected_word_idx is None and word_ends_rel:
|
| 232 |
-
selected_word_idx = len(word_ends_rel) - 1
|
| 233 |
-
|
| 234 |
-
spans = []
|
| 235 |
-
for i, w in enumerate(words_gen):
|
| 236 |
-
alpha = min(1.0, word_scores[i] / max_attn) if max_attn > 0 else 0.0
|
| 237 |
-
bg = f"rgba(66,133,244,{alpha:.3f})"
|
| 238 |
-
border = "2px solid #fff" if i == selected_word_idx else "1px solid transparent"
|
| 239 |
-
spans.append(
|
| 240 |
-
f"<span style='display:inline-block;background:{bg};border:{border};"
|
| 241 |
-
f"border-radius:6px;padding:2px 6px;margin:2px 4px 4px 0;color:#fff;'>"
|
| 242 |
-
f"{w}</span>"
|
| 243 |
-
)
|
| 244 |
-
|
| 245 |
-
return (
|
| 246 |
-
"<div style='width:100%;'>"
|
| 247 |
-
" <div style='background:#444;border:1px solid #eee;border-radius:8px;padding:10px;'>"
|
| 248 |
-
" <div style='white-space:normal;line-height:1.8;'>"
|
| 249 |
-
f" {''.join(spans)}"
|
| 250 |
-
" </div>"
|
| 251 |
-
" </div>"
|
| 252 |
-
"</div>"
|
| 253 |
-
)
|
| 254 |
-
|
| 255 |
-
# ========= Heatmap helpers for 1024 image tokens =========
|
| 256 |
-
def _attention_to_heatmap_uint8(attn_1d: np.ndarray, img_token_len: int = 1024, side: int = 32) -> np.ndarray:
|
| 257 |
-
"""
|
| 258 |
-
attn_1d: (k,) attention over keys for a given generation step; first 1024 are image tokens.
|
| 259 |
-
Returns a (32, 32) uint8 grayscale array.
|
| 260 |
-
"""
|
| 261 |
-
# take first 1024 (image tokens); pad/truncate as needed
|
| 262 |
-
if attn_1d.shape[0] < img_token_len:
|
| 263 |
-
img_part = np.zeros(img_token_len, dtype=float)
|
| 264 |
-
img_part[: attn_1d.shape[0]] = attn_1d
|
| 265 |
-
else:
|
| 266 |
-
img_part = attn_1d[:img_token_len]
|
| 267 |
-
|
| 268 |
-
# normalize to [0,1]
|
| 269 |
-
mn, mx = float(img_part.min()), float(img_part.max())
|
| 270 |
-
denom = (mx - mn) if (mx - mn) > 1e-12 else 1.0
|
| 271 |
-
norm = (img_part - mn) / denom
|
| 272 |
-
|
| 273 |
-
# return uint8 (0–255)
|
| 274 |
-
return (norm.reshape(side, side) * 255.0).astype(np.uint8)
|
| 275 |
-
|
| 276 |
-
def _colorize_heatmap(heatmap_u8: np.ndarray) -> Image.Image:
|
| 277 |
-
"""
|
| 278 |
-
Convert (H,W) uint8 grayscale to RGB heatmap using matplotlib (if available) or a simple fallback.
|
| 279 |
-
"""
|
| 280 |
-
if _HAS_MPL and _COLORMAP is not None:
|
| 281 |
-
colored = (_COLORMAP(heatmap_u8.astype(np.float32) / 255.0)[:, :, :3] * 255.0).astype(np.uint8)
|
| 282 |
-
return Image.fromarray(colored) # Pillow infers RGB
|
| 283 |
-
else:
|
| 284 |
-
# Fallback: map grayscale to red-yellow (simple linear)
|
| 285 |
-
g = heatmap_u8.astype(np.float32) / 255.0
|
| 286 |
-
r = (g * 255.0).clip(0, 255).astype(np.uint8)
|
| 287 |
-
g2 = (np.sqrt(g) * 255.0).clip(0, 255).astype(np.uint8)
|
| 288 |
-
b = np.zeros_like(r, dtype=np.uint8)
|
| 289 |
-
rgb = np.stack([r, g2, b], axis=-1)
|
| 290 |
-
return Image.fromarray(rgb) # Pillow infers RGB
|
| 291 |
-
|
| 292 |
-
def _resize_like(img: Image.Image, target_size: Tuple[int, int]) -> Image.Image:
|
| 293 |
-
return img.resize(target_size, resample=Image.BILINEAR)
|
| 294 |
-
|
| 295 |
-
def _make_overlay(orig: Image.Image, heatmap_rgb: Image.Image, alpha: float = 0.35) -> Image.Image:
|
| 296 |
-
"""
|
| 297 |
-
Blend heatmap over original. alpha in [0,1].
|
| 298 |
-
"""
|
| 299 |
-
if heatmap_rgb.size != orig.size:
|
| 300 |
-
heatmap_rgb = _resize_like(heatmap_rgb, orig.size)
|
| 301 |
-
base = orig.convert("RGBA")
|
| 302 |
-
overlay = heatmap_rgb.convert("RGBA")
|
| 303 |
-
# set global alpha
|
| 304 |
-
r, g, b = overlay.split()[:3]
|
| 305 |
-
a = Image.new("L", overlay.size, int(alpha * 255))
|
| 306 |
-
overlay = Image.merge("RGBA", (r, g, b, a))
|
| 307 |
-
return Image.alpha_composite(base, overlay).convert("RGB")
|
| 308 |
-
|
| 309 |
-
# ========= Core (image → generate) =========
|
| 310 |
-
def _prepare_image_tensor(pil_img, img_size=512):
|
| 311 |
-
tfm = image_transform(img_size=img_size)
|
| 312 |
-
tens = tfm(pil_img).unsqueeze(0).to(device, non_blocking=True) # [1,3,H,W]
|
| 313 |
-
return tens
|
| 314 |
-
|
| 315 |
-
def run_generation(pil_image, max_new_tokens, layer, head, mean_layers, mean_heads):
|
| 316 |
-
"""
|
| 317 |
-
1) Transform image
|
| 318 |
-
2) model.generate(pixel_values=..., max_new_tokens=..., output_attentions=True)
|
| 319 |
-
expected to return (gen_ids, gen_text, attentions)
|
| 320 |
-
3) Build selector over generated words only
|
| 321 |
-
4) Initial visualization -> (orig, overlay, heatmap, word HTML)
|
| 322 |
-
"""
|
| 323 |
-
if pil_image is None:
|
| 324 |
-
# Return placeholders
|
| 325 |
-
blank = Image.new("RGB", (256, 256), "black")
|
| 326 |
-
return (
|
| 327 |
-
None, None, 1024, None, None,
|
| 328 |
-
gr.update(choices=[], value=None),
|
| 329 |
-
blank, # original
|
| 330 |
-
blank, # overlay
|
| 331 |
-
np.zeros((256, 256, 3), dtype=np.uint8), # heatmap RGB upscaled (placeholder)
|
| 332 |
-
"<div style='text-align:center;padding:20px;'>Upload or load an image first.</div>",
|
| 333 |
-
)
|
| 334 |
-
|
| 335 |
-
pixel_values = _prepare_image_tensor(pil_image, img_size=512)
|
| 336 |
-
|
| 337 |
-
with torch.no_grad():
|
| 338 |
-
gen_ids, gen_text, attentions = model.generate(
|
| 339 |
-
pixel_values=pixel_values,
|
| 340 |
-
max_new_tokens=int(max_new_tokens),
|
| 341 |
-
output_attentions=True
|
| 342 |
-
)
|
| 343 |
-
|
| 344 |
-
# Expect batch size 1
|
| 345 |
-
if isinstance(gen_ids, torch.Tensor):
|
| 346 |
-
gen_ids = gen_ids[0].tolist()
|
| 347 |
-
gen_ids = _strip_trailing_special(gen_ids)
|
| 348 |
-
|
| 349 |
-
words_gen, gen_word2tok_rel = _words_and_map_from_tokens_simple(gen_ids)
|
| 350 |
-
|
| 351 |
-
display_choices = [(w, i) for i, w in enumerate(words_gen)]
|
| 352 |
-
if not display_choices:
|
| 353 |
-
# No generated tokens; still show original and blank heatmap/overlay
|
| 354 |
-
blank_hm = np.zeros((32, 32), dtype=np.uint8)
|
| 355 |
-
hm_rgb = _colorize_heatmap(blank_hm).resize(pil_image.size, resample=Image.NEAREST)
|
| 356 |
-
overlay = _make_overlay(pil_image, hm_rgb, alpha=0.35)
|
| 357 |
-
return (
|
| 358 |
-
attentions, gen_ids, 1024, words_gen, gen_word2tok_rel,
|
| 359 |
-
gr.update(choices=[], value=None),
|
| 360 |
-
pil_image, # original
|
| 361 |
-
overlay, # overlay
|
| 362 |
-
np.array(hm_rgb), # heatmap RGB
|
| 363 |
-
"<div style='text-align:center;padding:20px;'>No generated tokens to visualize.</div>",
|
| 364 |
-
)
|
| 365 |
-
|
| 366 |
-
first_idx = 0
|
| 367 |
-
hm_rgb_init, overlay_init, html_init = update_visualization(
|
| 368 |
-
selected_gen_index=first_idx,
|
| 369 |
-
attentions=attentions,
|
| 370 |
-
gen_token_ids=gen_ids,
|
| 371 |
-
layer=layer,
|
| 372 |
-
head=head,
|
| 373 |
-
mean_layers=mean_layers,
|
| 374 |
-
mean_heads=mean_heads,
|
| 375 |
-
words_gen=words_gen,
|
| 376 |
-
gen_word2tok_rel=gen_word2tok_rel,
|
| 377 |
-
pil_image=pil_image,
|
| 378 |
-
)
|
| 379 |
-
|
| 380 |
-
return (
|
| 381 |
-
attentions, # state_attentions
|
| 382 |
-
gen_ids, # state_gen_token_ids
|
| 383 |
-
1024, # state_img_token_len (fixed)
|
| 384 |
-
words_gen, # state_words_gen
|
| 385 |
-
gen_word2tok_rel, # state_gen_word2tok_rel
|
| 386 |
-
gr.update(choices=display_choices, value=first_idx),
|
| 387 |
-
pil_image, # original image view
|
| 388 |
-
overlay_init, # overlay (PIL)
|
| 389 |
-
hm_rgb_init, # heatmap RGB (np array or PIL)
|
| 390 |
-
html_init, # HTML words viz
|
| 391 |
-
)
|
| 392 |
-
|
| 393 |
-
def update_visualization(
|
| 394 |
-
selected_gen_index,
|
| 395 |
-
attentions,
|
| 396 |
-
gen_token_ids,
|
| 397 |
-
layer,
|
| 398 |
-
head,
|
| 399 |
-
mean_layers,
|
| 400 |
-
mean_heads,
|
| 401 |
-
words_gen,
|
| 402 |
-
gen_word2tok_rel,
|
| 403 |
-
pil_image: Optional[Image.Image] = None,
|
| 404 |
-
):
|
| 405 |
-
"""
|
| 406 |
-
Recompute visualization for the chosen GENERATED word:
|
| 407 |
-
- Extract attention vector for that generation step.
|
| 408 |
-
- Build 32×32 heatmap from first 1024 values (image tokens), colorize and upscale to original image size.
|
| 409 |
-
- Create overlay (original + heatmap with alpha).
|
| 410 |
-
- Build word HTML from the portion corresponding to generated tokens.
|
| 411 |
-
For step t, keys cover: 1024 image tokens + (t+1) generated tokens so far.
|
| 412 |
-
"""
|
| 413 |
-
if selected_gen_index is None or attentions is None or gen_word2tok_rel is None:
|
| 414 |
-
blank = np.zeros((256, 256, 3), dtype=np.uint8)
|
| 415 |
-
return Image.fromarray(blank), Image.fromarray(blank), "<div style='text-align:center;padding:20px;'>Generate first.</div>"
|
| 416 |
-
|
| 417 |
-
gidx = int(selected_gen_index)
|
| 418 |
-
if not (0 <= gidx < len(gen_word2tok_rel)):
|
| 419 |
-
blank = np.zeros((256, 256, 3), dtype=np.uint8)
|
| 420 |
-
return Image.fromarray(blank), Image.fromarray(blank), "<div style='text-align:center;padding:20px;'>Invalid selection.</div>"
|
| 421 |
-
|
| 422 |
-
step_index = int(gen_word2tok_rel[gidx]) # last token of that word (relative to generation)
|
| 423 |
-
if not attentions or step_index >= len(attentions):
|
| 424 |
-
blank = np.zeros((256, 256, 3), dtype=np.uint8)
|
| 425 |
-
return Image.fromarray(blank), Image.fromarray(blank), "<div style='text-align:center;padding:20px;'>No attention for this step.</div>"
|
| 426 |
-
|
| 427 |
-
token_attn = get_attention_for_token_layer(
|
| 428 |
-
attentions,
|
| 429 |
-
token_index=step_index,
|
| 430 |
-
layer_index=int(layer),
|
| 431 |
-
head_index=int(head),
|
| 432 |
-
mean_across_layers=bool(mean_layers),
|
| 433 |
-
mean_across_heads=bool(mean_heads),
|
| 434 |
-
)
|
| 435 |
-
|
| 436 |
-
attn_vals = token_attn.detach().cpu().numpy()
|
| 437 |
-
if attn_vals.ndim == 2:
|
| 438 |
-
attn_vals = attn_vals[-1] # (k,) from (q,k)
|
| 439 |
-
|
| 440 |
-
# ---- Heatmap over 1024 image tokens (colorized and upscaled to original size) ----
|
| 441 |
-
heatmap_u8 = _attention_to_heatmap_uint8(attn_1d=attn_vals, img_token_len=1024, side=32)
|
| 442 |
-
hm_rgb_pil = _colorize_heatmap(heatmap_u8)
|
| 443 |
-
|
| 444 |
-
# If original image not provided (should be), create a placeholder size
|
| 445 |
-
if pil_image is None:
|
| 446 |
-
pil_image = Image.new("RGB", (256, 256), "black")
|
| 447 |
-
|
| 448 |
-
hm_rgb_pil_up = hm_rgb_pil.resize(pil_image.size, resample=Image.NEAREST)
|
| 449 |
-
overlay_pil = _make_overlay(pil_image, hm_rgb_pil_up, alpha=0.35)
|
| 450 |
-
|
| 451 |
-
# ---- Word-level viz over generated tokens only ----
|
| 452 |
-
k_len = int(attn_vals.shape[0])
|
| 453 |
-
observed_gen = max(0, min(step_index + 1, max(0, k_len - 1024)))
|
| 454 |
-
total_gen = len(gen_token_ids)
|
| 455 |
-
|
| 456 |
-
gen_vec = np.zeros(total_gen, dtype=float)
|
| 457 |
-
if observed_gen > 0:
|
| 458 |
-
# slice generated part of attention vector
|
| 459 |
-
start = 1024
|
| 460 |
-
end = min(1024 + observed_gen, k_len)
|
| 461 |
-
gen_slice = attn_vals[start:end]
|
| 462 |
-
gen_vec[: len(gen_slice)] = gen_slice
|
| 463 |
-
|
| 464 |
-
selected_token_rel_idx = step_index
|
| 465 |
-
|
| 466 |
-
html_words = generate_word_visualization_gen_only(
|
| 467 |
-
words_gen=words_gen,
|
| 468 |
-
word_ends_rel=gen_word2tok_rel,
|
| 469 |
-
gen_attn_values=gen_vec,
|
| 470 |
-
selected_token_rel_idx=selected_token_rel_idx,
|
| 471 |
-
)
|
| 472 |
-
|
| 473 |
-
# Return (heatmap RGB, overlay, html)
|
| 474 |
-
return np.array(hm_rgb_pil_up), overlay_pil, html_words
|
| 475 |
-
|
| 476 |
-
def toggle_slider(is_mean):
|
| 477 |
-
return gr.update(interactive=not bool(is_mean))
|
| 478 |
-
|
| 479 |
-
# ========= Gradio UI =========
|
| 480 |
-
EXAMPLES_DIR = "examples"
|
| 481 |
-
|
| 482 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 483 |
-
gr.Markdown("# 🖼️→📝 Image-to-Text Attention Visualizer (three views + text)")
|
| 484 |
-
gr.Markdown(
|
| 485 |
-
"Upload an image or click **Load random sample**, generate text, then select a **generated word**. "
|
| 486 |
-
"Above: original image, overlay (original + attention), and heatmap (colored). "
|
| 487 |
-
"Below: word-level attention over generated text."
|
| 488 |
-
)
|
| 489 |
-
|
| 490 |
-
# States
|
| 491 |
-
state_attentions = gr.State(None) # tuple over generation steps
|
| 492 |
-
state_gen_token_ids = gr.State(None) # list[int]
|
| 493 |
-
state_img_token_len = gr.State(1024) # fixed
|
| 494 |
-
state_words_gen = gr.State(None) # list[str]
|
| 495 |
-
state_gen_word2tok_rel = gr.State(None) # list[int]
|
| 496 |
-
state_last_image = gr.State(None) # PIL image of last input
|
| 497 |
-
|
| 498 |
-
L, H = model_heads_layers()
|
| 499 |
-
|
| 500 |
-
with gr.Row():
|
| 501 |
-
with gr.Column(scale=1):
|
| 502 |
-
gr.Markdown("### 1) Image")
|
| 503 |
-
img_input = gr.Image(type="pil", label="Upload image", height=280)
|
| 504 |
-
btn_load_sample = gr.Button("Load random sample from /examples", variant="secondary")
|
| 505 |
-
sample_status = gr.Markdown("")
|
| 506 |
-
|
| 507 |
-
gr.Markdown("### 2) Generation")
|
| 508 |
-
slider_max_tokens = gr.Slider(5, 200, value=
|
| 509 |
-
btn_generate = gr.Button("Generate", variant="primary")
|
| 510 |
-
|
| 511 |
-
gr.Markdown("### 3) Attention")
|
| 512 |
-
check_mean_layers = gr.Checkbox(
|
| 513 |
-
check_mean_heads = gr.Checkbox(
|
| 514 |
-
slider_layer = gr.Slider(0, max(0, L - 1), value=0, step=1, label="Layer", interactive=
|
| 515 |
-
slider_head = gr.Slider(0, max(0, H - 1), value=0, step=1, label="Head", interactive=
|
| 516 |
-
|
| 517 |
-
with gr.Column(scale=3):
|
| 518 |
-
# Three views row
|
| 519 |
-
with gr.Row():
|
| 520 |
-
img_original_view = gr.Image(
|
| 521 |
-
value=None,
|
| 522 |
-
label="Original image",
|
| 523 |
-
image_mode="RGB",
|
| 524 |
-
height=256
|
| 525 |
-
)
|
| 526 |
-
img_overlay_view = gr.Image(
|
| 527 |
-
value=None,
|
| 528 |
-
label="Overlay (image + attention)",
|
| 529 |
-
image_mode="RGB",
|
| 530 |
-
height=256
|
| 531 |
-
)
|
| 532 |
-
heatmap_view = gr.Image(
|
| 533 |
-
value=None,
|
| 534 |
-
label="Heatmap (colored)",
|
| 535 |
-
image_mode="RGB",
|
| 536 |
-
height=256
|
| 537 |
-
)
|
| 538 |
-
|
| 539 |
-
# Word selector & HTML viz below
|
| 540 |
-
radio_word_selector = gr.Radio(
|
| 541 |
-
[], label="Select Generated Word",
|
| 542 |
-
info="Selector lists only generated words"
|
| 543 |
-
)
|
| 544 |
-
html_visualization = gr.HTML(
|
| 545 |
-
"<div style='text-align:center;padding:20px;color:#888;border:1px dashed #888;border-radius:8px;'>"
|
| 546 |
-
"Text attention visualization will appear here.</div>"
|
| 547 |
-
)
|
| 548 |
-
|
| 549 |
-
# Sample loader: always use `examples/`
|
| 550 |
-
def _load_sample_from_examples():
|
| 551 |
-
try:
|
| 552 |
-
files = [f for f in os.listdir(EXAMPLES_DIR) if not f.startswith(".")]
|
| 553 |
-
if not files:
|
| 554 |
-
return gr.update(), "No files in /examples."
|
| 555 |
-
fp = os.path.join(EXAMPLES_DIR, random.choice(files))
|
| 556 |
-
pil_img = pil_from_path(fp)
|
| 557 |
-
return gr.update(value=pil_img), f"Loaded sample: {os.path.basename(fp)}"
|
| 558 |
-
except Exception as e:
|
| 559 |
-
return gr.update(), f"Error loading sample: {e}"
|
| 560 |
-
|
| 561 |
-
btn_load_sample.click(
|
| 562 |
-
fn=_load_sample_from_examples,
|
| 563 |
-
inputs=[],
|
| 564 |
-
outputs=[img_input, sample_status]
|
| 565 |
-
)
|
| 566 |
-
|
| 567 |
-
# Generate
|
| 568 |
-
def _run_and_store(pil_image, *args):
|
| 569 |
-
out = run_generation(pil_image, *args)
|
| 570 |
-
# store the original image for later updates
|
| 571 |
-
return (*out, pil_image)
|
| 572 |
-
|
| 573 |
-
btn_generate.click(
|
| 574 |
-
fn=_run_and_store,
|
| 575 |
-
inputs=[img_input, slider_max_tokens, slider_layer, slider_head, check_mean_layers, check_mean_heads],
|
| 576 |
-
outputs=[
|
| 577 |
-
state_attentions,
|
| 578 |
-
state_gen_token_ids,
|
| 579 |
-
state_img_token_len,
|
| 580 |
-
state_words_gen,
|
| 581 |
-
state_gen_word2tok_rel,
|
| 582 |
-
radio_word_selector,
|
| 583 |
-
img_original_view, # original
|
| 584 |
-
img_overlay_view, # overlay
|
| 585 |
-
heatmap_view, # heatmap
|
| 586 |
-
html_visualization, # words HTML
|
| 587 |
-
state_last_image, # store original PIL
|
| 588 |
-
],
|
| 589 |
-
)
|
| 590 |
-
|
| 591 |
-
# Update viz on any control change
|
| 592 |
-
def _update_wrapper(selected_gen_index, attn, gen_ids, lyr, hed, meanL, meanH, words, word2tok, last_img):
|
| 593 |
-
hm_rgb, overlay, html = update_visualization(
|
| 594 |
-
selected_gen_index,
|
| 595 |
-
attn,
|
| 596 |
-
gen_ids,
|
| 597 |
-
lyr,
|
| 598 |
-
hed,
|
| 599 |
-
meanL,
|
| 600 |
-
meanH,
|
| 601 |
-
words,
|
| 602 |
-
word2tok,
|
| 603 |
-
pil_image=last_img
|
| 604 |
-
)
|
| 605 |
-
return overlay, hm_rgb, html
|
| 606 |
-
|
| 607 |
-
for control in [radio_word_selector, slider_layer, slider_head, check_mean_layers, check_mean_heads]:
|
| 608 |
-
control.change(
|
| 609 |
-
fn=_update_wrapper,
|
| 610 |
-
inputs=[
|
| 611 |
-
radio_word_selector,
|
| 612 |
-
state_attentions,
|
| 613 |
-
state_gen_token_ids,
|
| 614 |
-
slider_layer,
|
| 615 |
-
slider_head,
|
| 616 |
-
check_mean_layers,
|
| 617 |
-
check_mean_heads,
|
| 618 |
-
state_words_gen,
|
| 619 |
-
state_gen_word2tok_rel,
|
| 620 |
-
state_last_image,
|
| 621 |
-
],
|
| 622 |
-
outputs=[img_overlay_view, heatmap_view, html_visualization],
|
| 623 |
-
)
|
| 624 |
-
|
| 625 |
-
# Toggle slider interactivity
|
| 626 |
-
check_mean_layers.change(toggle_slider, check_mean_layers, slider_layer)
|
| 627 |
-
check_mean_heads.change(toggle_slider, check_mean_heads, slider_head)
|
| 628 |
-
|
| 629 |
-
if __name__ == "__main__":
|
| 630 |
-
print(f"Device: {device}")
|
| 631 |
-
demo.launch(debug=True)
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
"""
|
| 3 |
+
🖼️→📝 Image-to-Text Attention Visualizer (Custom Model)
|
| 4 |
+
- Loads your custom model via create_complete_model()
|
| 5 |
+
- Accepts an image, applies your transform, then calls:
|
| 6 |
+
model.generate(pixel_values=..., max_new_tokens=..., output_attentions=True)
|
| 7 |
+
- Selector lists ONLY generated words (no prompt tokens).
|
| 8 |
+
- Viewer (single row) shows:
|
| 9 |
+
(1) original image,
|
| 10 |
+
(2) original + colored attention heatmap overlay,
|
| 11 |
+
(3) heatmap alone (colored).
|
| 12 |
+
- Heatmap is built from the first 1024 image tokens (32×32), then upscaled to the image size.
|
| 13 |
+
- Text block below shows word-level attention over generated tokens (no return_offsets_mapping used).
|
| 14 |
+
- Fixes deprecations: Matplotlib colormap API & Pillow mode inference.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
import os
|
| 18 |
+
import re
|
| 19 |
+
import random
|
| 20 |
+
from typing import List, Tuple, Optional
|
| 21 |
+
|
| 22 |
+
import gradio as gr
|
| 23 |
+
import torch
|
| 24 |
+
import numpy as np
|
| 25 |
+
from PIL import Image
|
| 26 |
+
from safetensors.torch import load_model
|
| 27 |
+
|
| 28 |
+
# Optional: nicer colormap (Matplotlib >=3.7 API; no deprecation warnings)
|
| 29 |
+
try:
|
| 30 |
+
import matplotlib as mpl
|
| 31 |
+
_HAS_MPL = True
|
| 32 |
+
_COLORMAP = mpl.colormaps.get_cmap("magma")
|
| 33 |
+
except Exception:
|
| 34 |
+
_HAS_MPL = False
|
| 35 |
+
_COLORMAP = None
|
| 36 |
+
|
| 37 |
+
# ========= Your utilities & model =========
|
| 38 |
+
from utils.processing import image_transform, pil_from_path
|
| 39 |
+
from utils.complete_model import create_complete_model
|
| 40 |
+
|
| 41 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 42 |
+
model = create_complete_model(device=DEVICE, attention_implementation="eager")
|
| 43 |
+
SAFETENSOR_PATH = "complete_model.safetensor"
|
| 44 |
+
try:
|
| 45 |
+
load_model(model, SAFETENSOR_PATH)
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"Error loading model: {e}, continuing with uninitialized weights.")
|
| 48 |
+
model.eval()
|
| 49 |
+
device = DEVICE
|
| 50 |
+
|
| 51 |
+
# --- Grab tokenizer from your model ---
|
| 52 |
+
tokenizer = getattr(model, "tokenizer", None)
|
| 53 |
+
if tokenizer is None:
|
| 54 |
+
raise ValueError("Expected `model.tokenizer` to exist and be a HF-like tokenizer.")
|
| 55 |
+
|
| 56 |
+
# --- Fix PAD/EOS ambiguity (and resize embeddings if applicable) ---
|
| 57 |
+
needs_resize = False
|
| 58 |
+
pad_id = getattr(tokenizer, "pad_token_id", None)
|
| 59 |
+
eos_id = getattr(tokenizer, "eos_token_id", None)
|
| 60 |
+
if pad_id is None or (eos_id is not None and pad_id == eos_id):
|
| 61 |
+
tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
|
| 62 |
+
needs_resize = True
|
| 63 |
+
|
| 64 |
+
# Try common resize hooks safely (only if your decoder actually uses tokenizer vocab)
|
| 65 |
+
if needs_resize:
|
| 66 |
+
resize_fns = [
|
| 67 |
+
getattr(getattr(model, "decoder", None), "resize_token_embeddings", None),
|
| 68 |
+
getattr(model, "resize_token_embeddings", None),
|
| 69 |
+
]
|
| 70 |
+
for fn in resize_fns:
|
| 71 |
+
if callable(fn):
|
| 72 |
+
try:
|
| 73 |
+
fn(len(tokenizer))
|
| 74 |
+
break
|
| 75 |
+
except Exception:
|
| 76 |
+
# If your model doesn't need resizing (separate vocab), it's fine.
|
| 77 |
+
pass
|
| 78 |
+
|
| 79 |
+
# ========= Regex for words (words + punctuation) =========
|
| 80 |
+
WORD_RE = re.compile(r"\w+(?:'\w+)?|[^\w\s]")
|
| 81 |
+
|
| 82 |
+
# ========= Model metadata (for slider ranges) =========
|
| 83 |
+
def model_heads_layers():
|
| 84 |
+
def _get(obj, *names, default=None):
|
| 85 |
+
for n in names:
|
| 86 |
+
if obj is None:
|
| 87 |
+
return default
|
| 88 |
+
if hasattr(obj, n):
|
| 89 |
+
try:
|
| 90 |
+
return int(getattr(obj, n))
|
| 91 |
+
except Exception:
|
| 92 |
+
return default
|
| 93 |
+
return default
|
| 94 |
+
|
| 95 |
+
cfg_candidates = [
|
| 96 |
+
getattr(model, "config", None),
|
| 97 |
+
getattr(getattr(model, "decoder", None), "config", None),
|
| 98 |
+
getattr(getattr(model, "lm_head", None), "config", None),
|
| 99 |
+
]
|
| 100 |
+
L = H = None
|
| 101 |
+
for cfg in cfg_candidates:
|
| 102 |
+
if L is None:
|
| 103 |
+
L = _get(cfg, "num_hidden_layers", "n_layer", default=None)
|
| 104 |
+
if H is None:
|
| 105 |
+
H = _get(cfg, "num_attention_heads", "n_head", default=None)
|
| 106 |
+
if L is None: L = 12
|
| 107 |
+
if H is None: H = 12
|
| 108 |
+
return max(1, L), max(1, H)
|
| 109 |
+
|
| 110 |
+
# ========= Attention utils =========
|
| 111 |
+
def get_attention_for_token_layer(
|
| 112 |
+
attentions,
|
| 113 |
+
token_index,
|
| 114 |
+
layer_index,
|
| 115 |
+
batch_index=0,
|
| 116 |
+
head_index=0,
|
| 117 |
+
mean_across_layers=True,
|
| 118 |
+
mean_across_heads=True,
|
| 119 |
+
):
|
| 120 |
+
"""
|
| 121 |
+
`attentions`:
|
| 122 |
+
tuple length = #generated tokens
|
| 123 |
+
attentions[t] -> tuple over layers; each layer tensor is (batch, heads, q, k)
|
| 124 |
+
"""
|
| 125 |
+
token_attention = attentions[token_index]
|
| 126 |
+
|
| 127 |
+
if mean_across_layers:
|
| 128 |
+
layer_attention = torch.stack(token_attention).mean(dim=0) # (batch, heads, q, k)
|
| 129 |
+
else:
|
| 130 |
+
layer_attention = token_attention[int(layer_index)] # (batch, heads, q, k)
|
| 131 |
+
|
| 132 |
+
batch_attention = layer_attention[int(batch_index)] # (heads, q, k)
|
| 133 |
+
|
| 134 |
+
if mean_across_heads:
|
| 135 |
+
head_attention = batch_attention.mean(dim=0) # (q, k)
|
| 136 |
+
else:
|
| 137 |
+
head_attention = batch_attention[int(head_index)] # (q, k)
|
| 138 |
+
|
| 139 |
+
return head_attention.squeeze(0) # q==1 -> (k,)
|
| 140 |
+
|
| 141 |
+
# ========= Tokens → words mapping (no offset_mapping needed) =========
|
| 142 |
+
def _words_and_map_from_tokens_simple(token_ids: List[int]) -> Tuple[List[str], List[int]]:
|
| 143 |
+
"""
|
| 144 |
+
Works with slow/fast tokenizers. No return_offsets_mapping.
|
| 145 |
+
Steps:
|
| 146 |
+
1) detok token_ids
|
| 147 |
+
2) regex-split words and get their char-end positions
|
| 148 |
+
3) for each word-end (we), encode detok[:we] w/ add_special_tokens=False
|
| 149 |
+
last token index = len(prefix_ids) - 1
|
| 150 |
+
"""
|
| 151 |
+
if not token_ids:
|
| 152 |
+
return [], []
|
| 153 |
+
|
| 154 |
+
toks = tokenizer.convert_ids_to_tokens(token_ids)
|
| 155 |
+
detok = tokenizer.convert_tokens_to_string(toks)
|
| 156 |
+
|
| 157 |
+
matches = list(re.finditer(WORD_RE, detok))
|
| 158 |
+
words = [m.group(0) for m in matches]
|
| 159 |
+
ends = [m.span()[1] for m in matches] # char end (exclusive)
|
| 160 |
+
|
| 161 |
+
word2tok: List[int] = []
|
| 162 |
+
for we in ends:
|
| 163 |
+
prefix_ids = tokenizer.encode(detok[:we], add_special_tokens=False)
|
| 164 |
+
if not prefix_ids:
|
| 165 |
+
word2tok.append(0)
|
| 166 |
+
continue
|
| 167 |
+
last_idx = len(prefix_ids) - 1
|
| 168 |
+
last_idx = max(0, min(last_idx, len(token_ids) - 1))
|
| 169 |
+
word2tok.append(last_idx)
|
| 170 |
+
|
| 171 |
+
return words, word2tok
|
| 172 |
+
|
| 173 |
+
def _strip_trailing_special(ids: List[int]) -> List[int]:
|
| 174 |
+
specials = set(getattr(tokenizer, "all_special_ids", []) or [])
|
| 175 |
+
j = len(ids)
|
| 176 |
+
while j > 0 and ids[j - 1] in specials:
|
| 177 |
+
j -= 1
|
| 178 |
+
return ids[:j]
|
| 179 |
+
|
| 180 |
+
# ========= Visualization (word-level for generated text) =========
|
| 181 |
+
def generate_word_visualization_gen_only(
|
| 182 |
+
words_gen: List[str],
|
| 183 |
+
word_ends_rel: List[int],
|
| 184 |
+
gen_attn_values: np.ndarray,
|
| 185 |
+
selected_token_rel_idx: int,
|
| 186 |
+
) -> str:
|
| 187 |
+
"""
|
| 188 |
+
words_gen: generated words only
|
| 189 |
+
word_ends_rel: last-token indices of each generated word (relative to generation)
|
| 190 |
+
gen_attn_values: length == len(gen_token_ids), attention over generated tokens only
|
| 191 |
+
(zeros for future tokens padded at the end)
|
| 192 |
+
"""
|
| 193 |
+
if not words_gen or gen_attn_values is None or len(gen_attn_values) == 0:
|
| 194 |
+
return (
|
| 195 |
+
"<div style='width:100%;'>"
|
| 196 |
+
" <div style='background:#444;border:1px solid #eee;border-radius:8px;padding:10px;'>"
|
| 197 |
+
" <div style='color:#ddd;'>No text attention values.</div>"
|
| 198 |
+
" </div>"
|
| 199 |
+
"</div>"
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# compute word starts from ends (inclusive indexing)
|
| 203 |
+
starts = []
|
| 204 |
+
for i, end in enumerate(word_ends_rel):
|
| 205 |
+
if i == 0:
|
| 206 |
+
starts.append(0)
|
| 207 |
+
else:
|
| 208 |
+
starts.append(min(word_ends_rel[i - 1] + 1, end))
|
| 209 |
+
|
| 210 |
+
# sum attention per word
|
| 211 |
+
word_scores = []
|
| 212 |
+
T = len(gen_attn_values)
|
| 213 |
+
for i, end in enumerate(word_ends_rel):
|
| 214 |
+
start = starts[i]
|
| 215 |
+
if start > end:
|
| 216 |
+
start = end
|
| 217 |
+
s = max(0, min(start, T - 1))
|
| 218 |
+
e = max(0, min(end, T - 1))
|
| 219 |
+
if e < s:
|
| 220 |
+
s, e = e, s
|
| 221 |
+
word_scores.append(float(gen_attn_values[s:e + 1].sum()))
|
| 222 |
+
|
| 223 |
+
max_attn = max(0.1, float(max(word_scores)) if word_scores else 0.0)
|
| 224 |
+
|
| 225 |
+
# find selected word (contains selected token idx)
|
| 226 |
+
selected_word_idx = None
|
| 227 |
+
for i, end in enumerate(word_ends_rel):
|
| 228 |
+
if selected_token_rel_idx <= end:
|
| 229 |
+
selected_word_idx = i
|
| 230 |
+
break
|
| 231 |
+
if selected_word_idx is None and word_ends_rel:
|
| 232 |
+
selected_word_idx = len(word_ends_rel) - 1
|
| 233 |
+
|
| 234 |
+
spans = []
|
| 235 |
+
for i, w in enumerate(words_gen):
|
| 236 |
+
alpha = min(1.0, word_scores[i] / max_attn) if max_attn > 0 else 0.0
|
| 237 |
+
bg = f"rgba(66,133,244,{alpha:.3f})"
|
| 238 |
+
border = "2px solid #fff" if i == selected_word_idx else "1px solid transparent"
|
| 239 |
+
spans.append(
|
| 240 |
+
f"<span style='display:inline-block;background:{bg};border:{border};"
|
| 241 |
+
f"border-radius:6px;padding:2px 6px;margin:2px 4px 4px 0;color:#fff;'>"
|
| 242 |
+
f"{w}</span>"
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
return (
|
| 246 |
+
"<div style='width:100%;'>"
|
| 247 |
+
" <div style='background:#444;border:1px solid #eee;border-radius:8px;padding:10px;'>"
|
| 248 |
+
" <div style='white-space:normal;line-height:1.8;'>"
|
| 249 |
+
f" {''.join(spans)}"
|
| 250 |
+
" </div>"
|
| 251 |
+
" </div>"
|
| 252 |
+
"</div>"
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
# ========= Heatmap helpers for 1024 image tokens =========
|
| 256 |
+
def _attention_to_heatmap_uint8(attn_1d: np.ndarray, img_token_len: int = 1024, side: int = 32) -> np.ndarray:
|
| 257 |
+
"""
|
| 258 |
+
attn_1d: (k,) attention over keys for a given generation step; first 1024 are image tokens.
|
| 259 |
+
Returns a (32, 32) uint8 grayscale array.
|
| 260 |
+
"""
|
| 261 |
+
# take first 1024 (image tokens); pad/truncate as needed
|
| 262 |
+
if attn_1d.shape[0] < img_token_len:
|
| 263 |
+
img_part = np.zeros(img_token_len, dtype=float)
|
| 264 |
+
img_part[: attn_1d.shape[0]] = attn_1d
|
| 265 |
+
else:
|
| 266 |
+
img_part = attn_1d[:img_token_len]
|
| 267 |
+
|
| 268 |
+
# normalize to [0,1]
|
| 269 |
+
mn, mx = float(img_part.min()), float(img_part.max())
|
| 270 |
+
denom = (mx - mn) if (mx - mn) > 1e-12 else 1.0
|
| 271 |
+
norm = (img_part - mn) / denom
|
| 272 |
+
|
| 273 |
+
# return uint8 (0–255)
|
| 274 |
+
return (norm.reshape(side, side) * 255.0).astype(np.uint8)
|
| 275 |
+
|
| 276 |
+
def _colorize_heatmap(heatmap_u8: np.ndarray) -> Image.Image:
|
| 277 |
+
"""
|
| 278 |
+
Convert (H,W) uint8 grayscale to RGB heatmap using matplotlib (if available) or a simple fallback.
|
| 279 |
+
"""
|
| 280 |
+
if _HAS_MPL and _COLORMAP is not None:
|
| 281 |
+
colored = (_COLORMAP(heatmap_u8.astype(np.float32) / 255.0)[:, :, :3] * 255.0).astype(np.uint8)
|
| 282 |
+
return Image.fromarray(colored) # Pillow infers RGB
|
| 283 |
+
else:
|
| 284 |
+
# Fallback: map grayscale to red-yellow (simple linear)
|
| 285 |
+
g = heatmap_u8.astype(np.float32) / 255.0
|
| 286 |
+
r = (g * 255.0).clip(0, 255).astype(np.uint8)
|
| 287 |
+
g2 = (np.sqrt(g) * 255.0).clip(0, 255).astype(np.uint8)
|
| 288 |
+
b = np.zeros_like(r, dtype=np.uint8)
|
| 289 |
+
rgb = np.stack([r, g2, b], axis=-1)
|
| 290 |
+
return Image.fromarray(rgb) # Pillow infers RGB
|
| 291 |
+
|
| 292 |
+
def _resize_like(img: Image.Image, target_size: Tuple[int, int]) -> Image.Image:
|
| 293 |
+
return img.resize(target_size, resample=Image.BILINEAR)
|
| 294 |
+
|
| 295 |
+
def _make_overlay(orig: Image.Image, heatmap_rgb: Image.Image, alpha: float = 0.35) -> Image.Image:
|
| 296 |
+
"""
|
| 297 |
+
Blend heatmap over original. alpha in [0,1].
|
| 298 |
+
"""
|
| 299 |
+
if heatmap_rgb.size != orig.size:
|
| 300 |
+
heatmap_rgb = _resize_like(heatmap_rgb, orig.size)
|
| 301 |
+
base = orig.convert("RGBA")
|
| 302 |
+
overlay = heatmap_rgb.convert("RGBA")
|
| 303 |
+
# set global alpha
|
| 304 |
+
r, g, b = overlay.split()[:3]
|
| 305 |
+
a = Image.new("L", overlay.size, int(alpha * 255))
|
| 306 |
+
overlay = Image.merge("RGBA", (r, g, b, a))
|
| 307 |
+
return Image.alpha_composite(base, overlay).convert("RGB")
|
| 308 |
+
|
| 309 |
+
# ========= Core (image → generate) =========
|
| 310 |
+
def _prepare_image_tensor(pil_img, img_size=512):
|
| 311 |
+
tfm = image_transform(img_size=img_size)
|
| 312 |
+
tens = tfm(pil_img).unsqueeze(0).to(device, non_blocking=True) # [1,3,H,W]
|
| 313 |
+
return tens
|
| 314 |
+
|
| 315 |
+
def run_generation(pil_image, max_new_tokens, layer, head, mean_layers, mean_heads):
|
| 316 |
+
"""
|
| 317 |
+
1) Transform image
|
| 318 |
+
2) model.generate(pixel_values=..., max_new_tokens=..., output_attentions=True)
|
| 319 |
+
expected to return (gen_ids, gen_text, attentions)
|
| 320 |
+
3) Build selector over generated words only
|
| 321 |
+
4) Initial visualization -> (orig, overlay, heatmap, word HTML)
|
| 322 |
+
"""
|
| 323 |
+
if pil_image is None:
|
| 324 |
+
# Return placeholders
|
| 325 |
+
blank = Image.new("RGB", (256, 256), "black")
|
| 326 |
+
return (
|
| 327 |
+
None, None, 1024, None, None,
|
| 328 |
+
gr.update(choices=[], value=None),
|
| 329 |
+
blank, # original
|
| 330 |
+
blank, # overlay
|
| 331 |
+
np.zeros((256, 256, 3), dtype=np.uint8), # heatmap RGB upscaled (placeholder)
|
| 332 |
+
"<div style='text-align:center;padding:20px;'>Upload or load an image first.</div>",
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
pixel_values = _prepare_image_tensor(pil_image, img_size=512)
|
| 336 |
+
|
| 337 |
+
with torch.no_grad():
|
| 338 |
+
gen_ids, gen_text, attentions = model.generate(
|
| 339 |
+
pixel_values=pixel_values,
|
| 340 |
+
max_new_tokens=int(max_new_tokens),
|
| 341 |
+
output_attentions=True
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
# Expect batch size 1
|
| 345 |
+
if isinstance(gen_ids, torch.Tensor):
|
| 346 |
+
gen_ids = gen_ids[0].tolist()
|
| 347 |
+
gen_ids = _strip_trailing_special(gen_ids)
|
| 348 |
+
|
| 349 |
+
words_gen, gen_word2tok_rel = _words_and_map_from_tokens_simple(gen_ids)
|
| 350 |
+
|
| 351 |
+
display_choices = [(w, i) for i, w in enumerate(words_gen)]
|
| 352 |
+
if not display_choices:
|
| 353 |
+
# No generated tokens; still show original and blank heatmap/overlay
|
| 354 |
+
blank_hm = np.zeros((32, 32), dtype=np.uint8)
|
| 355 |
+
hm_rgb = _colorize_heatmap(blank_hm).resize(pil_image.size, resample=Image.NEAREST)
|
| 356 |
+
overlay = _make_overlay(pil_image, hm_rgb, alpha=0.35)
|
| 357 |
+
return (
|
| 358 |
+
attentions, gen_ids, 1024, words_gen, gen_word2tok_rel,
|
| 359 |
+
gr.update(choices=[], value=None),
|
| 360 |
+
pil_image, # original
|
| 361 |
+
overlay, # overlay
|
| 362 |
+
np.array(hm_rgb), # heatmap RGB
|
| 363 |
+
"<div style='text-align:center;padding:20px;'>No generated tokens to visualize.</div>",
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
first_idx = 0
|
| 367 |
+
hm_rgb_init, overlay_init, html_init = update_visualization(
|
| 368 |
+
selected_gen_index=first_idx,
|
| 369 |
+
attentions=attentions,
|
| 370 |
+
gen_token_ids=gen_ids,
|
| 371 |
+
layer=layer,
|
| 372 |
+
head=head,
|
| 373 |
+
mean_layers=mean_layers,
|
| 374 |
+
mean_heads=mean_heads,
|
| 375 |
+
words_gen=words_gen,
|
| 376 |
+
gen_word2tok_rel=gen_word2tok_rel,
|
| 377 |
+
pil_image=pil_image,
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
return (
|
| 381 |
+
attentions, # state_attentions
|
| 382 |
+
gen_ids, # state_gen_token_ids
|
| 383 |
+
1024, # state_img_token_len (fixed)
|
| 384 |
+
words_gen, # state_words_gen
|
| 385 |
+
gen_word2tok_rel, # state_gen_word2tok_rel
|
| 386 |
+
gr.update(choices=display_choices, value=first_idx),
|
| 387 |
+
pil_image, # original image view
|
| 388 |
+
overlay_init, # overlay (PIL)
|
| 389 |
+
hm_rgb_init, # heatmap RGB (np array or PIL)
|
| 390 |
+
html_init, # HTML words viz
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
def update_visualization(
|
| 394 |
+
selected_gen_index,
|
| 395 |
+
attentions,
|
| 396 |
+
gen_token_ids,
|
| 397 |
+
layer,
|
| 398 |
+
head,
|
| 399 |
+
mean_layers,
|
| 400 |
+
mean_heads,
|
| 401 |
+
words_gen,
|
| 402 |
+
gen_word2tok_rel,
|
| 403 |
+
pil_image: Optional[Image.Image] = None,
|
| 404 |
+
):
|
| 405 |
+
"""
|
| 406 |
+
Recompute visualization for the chosen GENERATED word:
|
| 407 |
+
- Extract attention vector for that generation step.
|
| 408 |
+
- Build 32×32 heatmap from first 1024 values (image tokens), colorize and upscale to original image size.
|
| 409 |
+
- Create overlay (original + heatmap with alpha).
|
| 410 |
+
- Build word HTML from the portion corresponding to generated tokens.
|
| 411 |
+
For step t, keys cover: 1024 image tokens + (t+1) generated tokens so far.
|
| 412 |
+
"""
|
| 413 |
+
if selected_gen_index is None or attentions is None or gen_word2tok_rel is None:
|
| 414 |
+
blank = np.zeros((256, 256, 3), dtype=np.uint8)
|
| 415 |
+
return Image.fromarray(blank), Image.fromarray(blank), "<div style='text-align:center;padding:20px;'>Generate first.</div>"
|
| 416 |
+
|
| 417 |
+
gidx = int(selected_gen_index)
|
| 418 |
+
if not (0 <= gidx < len(gen_word2tok_rel)):
|
| 419 |
+
blank = np.zeros((256, 256, 3), dtype=np.uint8)
|
| 420 |
+
return Image.fromarray(blank), Image.fromarray(blank), "<div style='text-align:center;padding:20px;'>Invalid selection.</div>"
|
| 421 |
+
|
| 422 |
+
step_index = int(gen_word2tok_rel[gidx]) # last token of that word (relative to generation)
|
| 423 |
+
if not attentions or step_index >= len(attentions):
|
| 424 |
+
blank = np.zeros((256, 256, 3), dtype=np.uint8)
|
| 425 |
+
return Image.fromarray(blank), Image.fromarray(blank), "<div style='text-align:center;padding:20px;'>No attention for this step.</div>"
|
| 426 |
+
|
| 427 |
+
token_attn = get_attention_for_token_layer(
|
| 428 |
+
attentions,
|
| 429 |
+
token_index=step_index,
|
| 430 |
+
layer_index=int(layer),
|
| 431 |
+
head_index=int(head),
|
| 432 |
+
mean_across_layers=bool(mean_layers),
|
| 433 |
+
mean_across_heads=bool(mean_heads),
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
attn_vals = token_attn.detach().cpu().numpy()
|
| 437 |
+
if attn_vals.ndim == 2:
|
| 438 |
+
attn_vals = attn_vals[-1] # (k,) from (q,k)
|
| 439 |
+
|
| 440 |
+
# ---- Heatmap over 1024 image tokens (colorized and upscaled to original size) ----
|
| 441 |
+
heatmap_u8 = _attention_to_heatmap_uint8(attn_1d=attn_vals, img_token_len=1024, side=32)
|
| 442 |
+
hm_rgb_pil = _colorize_heatmap(heatmap_u8)
|
| 443 |
+
|
| 444 |
+
# If original image not provided (should be), create a placeholder size
|
| 445 |
+
if pil_image is None:
|
| 446 |
+
pil_image = Image.new("RGB", (256, 256), "black")
|
| 447 |
+
|
| 448 |
+
hm_rgb_pil_up = hm_rgb_pil.resize(pil_image.size, resample=Image.NEAREST)
|
| 449 |
+
overlay_pil = _make_overlay(pil_image, hm_rgb_pil_up, alpha=0.35)
|
| 450 |
+
|
| 451 |
+
# ---- Word-level viz over generated tokens only ----
|
| 452 |
+
k_len = int(attn_vals.shape[0])
|
| 453 |
+
observed_gen = max(0, min(step_index + 1, max(0, k_len - 1024)))
|
| 454 |
+
total_gen = len(gen_token_ids)
|
| 455 |
+
|
| 456 |
+
gen_vec = np.zeros(total_gen, dtype=float)
|
| 457 |
+
if observed_gen > 0:
|
| 458 |
+
# slice generated part of attention vector
|
| 459 |
+
start = 1024
|
| 460 |
+
end = min(1024 + observed_gen, k_len)
|
| 461 |
+
gen_slice = attn_vals[start:end]
|
| 462 |
+
gen_vec[: len(gen_slice)] = gen_slice
|
| 463 |
+
|
| 464 |
+
selected_token_rel_idx = step_index
|
| 465 |
+
|
| 466 |
+
html_words = generate_word_visualization_gen_only(
|
| 467 |
+
words_gen=words_gen,
|
| 468 |
+
word_ends_rel=gen_word2tok_rel,
|
| 469 |
+
gen_attn_values=gen_vec,
|
| 470 |
+
selected_token_rel_idx=selected_token_rel_idx,
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
# Return (heatmap RGB, overlay, html)
|
| 474 |
+
return np.array(hm_rgb_pil_up), overlay_pil, html_words
|
| 475 |
+
|
| 476 |
+
def toggle_slider(is_mean):
|
| 477 |
+
return gr.update(interactive=not bool(is_mean))
|
| 478 |
+
|
| 479 |
+
# ========= Gradio UI =========
|
| 480 |
+
EXAMPLES_DIR = "examples"
|
| 481 |
+
|
| 482 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 483 |
+
gr.Markdown("# 🖼️→📝 Image-to-Text Attention Visualizer (three views + text)")
|
| 484 |
+
gr.Markdown(
|
| 485 |
+
"Upload an image or click **Load random sample**, generate text, then select a **generated word**. "
|
| 486 |
+
"Above: original image, overlay (original + attention), and heatmap (colored). "
|
| 487 |
+
"Below: word-level attention over generated text."
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
# States
|
| 491 |
+
state_attentions = gr.State(None) # tuple over generation steps
|
| 492 |
+
state_gen_token_ids = gr.State(None) # list[int]
|
| 493 |
+
state_img_token_len = gr.State(1024) # fixed
|
| 494 |
+
state_words_gen = gr.State(None) # list[str]
|
| 495 |
+
state_gen_word2tok_rel = gr.State(None) # list[int]
|
| 496 |
+
state_last_image = gr.State(None) # PIL image of last input
|
| 497 |
+
|
| 498 |
+
L, H = model_heads_layers()
|
| 499 |
+
|
| 500 |
+
with gr.Row():
|
| 501 |
+
with gr.Column(scale=1):
|
| 502 |
+
gr.Markdown("### 1) Image")
|
| 503 |
+
img_input = gr.Image(type="pil", label="Upload image", height=280)
|
| 504 |
+
btn_load_sample = gr.Button("Load random sample from /examples", variant="secondary")
|
| 505 |
+
sample_status = gr.Markdown("")
|
| 506 |
+
|
| 507 |
+
gr.Markdown("### 2) Generation")
|
| 508 |
+
slider_max_tokens = gr.Slider(5, 200, value=100, step=5, label="Max New Tokens")
|
| 509 |
+
btn_generate = gr.Button("Generate", variant="primary")
|
| 510 |
+
|
| 511 |
+
gr.Markdown("### 3) Attention")
|
| 512 |
+
check_mean_layers = gr.Checkbox(False, label="Mean Across Layers")
|
| 513 |
+
check_mean_heads = gr.Checkbox(False, label="Mean Across Heads")
|
| 514 |
+
slider_layer = gr.Slider(0, max(0, L - 1), value=0, step=1, label="Layer", interactive=True)
|
| 515 |
+
slider_head = gr.Slider(0, max(0, H - 1), value=0, step=1, label="Head", interactive=True)
|
| 516 |
+
|
| 517 |
+
with gr.Column(scale=3):
|
| 518 |
+
# Three views row
|
| 519 |
+
with gr.Row():
|
| 520 |
+
img_original_view = gr.Image(
|
| 521 |
+
value=None,
|
| 522 |
+
label="Original image",
|
| 523 |
+
image_mode="RGB",
|
| 524 |
+
height=256
|
| 525 |
+
)
|
| 526 |
+
img_overlay_view = gr.Image(
|
| 527 |
+
value=None,
|
| 528 |
+
label="Overlay (image + attention)",
|
| 529 |
+
image_mode="RGB",
|
| 530 |
+
height=256
|
| 531 |
+
)
|
| 532 |
+
heatmap_view = gr.Image(
|
| 533 |
+
value=None,
|
| 534 |
+
label="Heatmap (colored)",
|
| 535 |
+
image_mode="RGB",
|
| 536 |
+
height=256
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
# Word selector & HTML viz below
|
| 540 |
+
radio_word_selector = gr.Radio(
|
| 541 |
+
[], label="Select Generated Word",
|
| 542 |
+
info="Selector lists only generated words"
|
| 543 |
+
)
|
| 544 |
+
html_visualization = gr.HTML(
|
| 545 |
+
"<div style='text-align:center;padding:20px;color:#888;border:1px dashed #888;border-radius:8px;'>"
|
| 546 |
+
"Text attention visualization will appear here.</div>"
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
# Sample loader: always use `examples/`
|
| 550 |
+
def _load_sample_from_examples():
|
| 551 |
+
try:
|
| 552 |
+
files = [f for f in os.listdir(EXAMPLES_DIR) if not f.startswith(".")]
|
| 553 |
+
if not files:
|
| 554 |
+
return gr.update(), "No files in /examples."
|
| 555 |
+
fp = os.path.join(EXAMPLES_DIR, random.choice(files))
|
| 556 |
+
pil_img = pil_from_path(fp)
|
| 557 |
+
return gr.update(value=pil_img), f"Loaded sample: {os.path.basename(fp)}"
|
| 558 |
+
except Exception as e:
|
| 559 |
+
return gr.update(), f"Error loading sample: {e}"
|
| 560 |
+
|
| 561 |
+
btn_load_sample.click(
|
| 562 |
+
fn=_load_sample_from_examples,
|
| 563 |
+
inputs=[],
|
| 564 |
+
outputs=[img_input, sample_status]
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
# Generate
|
| 568 |
+
def _run_and_store(pil_image, *args):
|
| 569 |
+
out = run_generation(pil_image, *args)
|
| 570 |
+
# store the original image for later updates
|
| 571 |
+
return (*out, pil_image)
|
| 572 |
+
|
| 573 |
+
btn_generate.click(
|
| 574 |
+
fn=_run_and_store,
|
| 575 |
+
inputs=[img_input, slider_max_tokens, slider_layer, slider_head, check_mean_layers, check_mean_heads],
|
| 576 |
+
outputs=[
|
| 577 |
+
state_attentions,
|
| 578 |
+
state_gen_token_ids,
|
| 579 |
+
state_img_token_len,
|
| 580 |
+
state_words_gen,
|
| 581 |
+
state_gen_word2tok_rel,
|
| 582 |
+
radio_word_selector,
|
| 583 |
+
img_original_view, # original
|
| 584 |
+
img_overlay_view, # overlay
|
| 585 |
+
heatmap_view, # heatmap
|
| 586 |
+
html_visualization, # words HTML
|
| 587 |
+
state_last_image, # store original PIL
|
| 588 |
+
],
|
| 589 |
+
)
|
| 590 |
+
|
| 591 |
+
# Update viz on any control change
|
| 592 |
+
def _update_wrapper(selected_gen_index, attn, gen_ids, lyr, hed, meanL, meanH, words, word2tok, last_img):
|
| 593 |
+
hm_rgb, overlay, html = update_visualization(
|
| 594 |
+
selected_gen_index,
|
| 595 |
+
attn,
|
| 596 |
+
gen_ids,
|
| 597 |
+
lyr,
|
| 598 |
+
hed,
|
| 599 |
+
meanL,
|
| 600 |
+
meanH,
|
| 601 |
+
words,
|
| 602 |
+
word2tok,
|
| 603 |
+
pil_image=last_img
|
| 604 |
+
)
|
| 605 |
+
return overlay, hm_rgb, html
|
| 606 |
+
|
| 607 |
+
for control in [radio_word_selector, slider_layer, slider_head, check_mean_layers, check_mean_heads]:
|
| 608 |
+
control.change(
|
| 609 |
+
fn=_update_wrapper,
|
| 610 |
+
inputs=[
|
| 611 |
+
radio_word_selector,
|
| 612 |
+
state_attentions,
|
| 613 |
+
state_gen_token_ids,
|
| 614 |
+
slider_layer,
|
| 615 |
+
slider_head,
|
| 616 |
+
check_mean_layers,
|
| 617 |
+
check_mean_heads,
|
| 618 |
+
state_words_gen,
|
| 619 |
+
state_gen_word2tok_rel,
|
| 620 |
+
state_last_image,
|
| 621 |
+
],
|
| 622 |
+
outputs=[img_overlay_view, heatmap_view, html_visualization],
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
# Toggle slider interactivity
|
| 626 |
+
check_mean_layers.change(toggle_slider, check_mean_layers, slider_layer)
|
| 627 |
+
check_mean_heads.change(toggle_slider, check_mean_heads, slider_head)
|
| 628 |
+
|
| 629 |
+
if __name__ == "__main__":
|
| 630 |
+
print(f"Device: {device}")
|
| 631 |
+
demo.launch(debug=True)
|