import os import io import re import time import requests import pdfplumber import numpy as np import pandas as pd from bs4 import BeautifulSoup import folium from folium.plugins import FloatImage import gradio as gr # Configuration file_name = 'bathing_sites.csv' url = 'https://eau.gouvernement.lu/fr/domaines-activite/eauxbaignade/sites-de-baignade.html' def extract_coordinates(url): x_match = re.search(r'X=(\d+)', url) y_match = re.search(r'Y=(\d+)', url) x = int(x_match.group(1) if x_match else 0) y = int(y_match.group(1) if y_match else 0) R = 6378137 # Earth's radius in meters if x != 0: x = (x / R) * (180 / np.pi) if y != 0: y = (180 / np.pi) * (2 * np.arctan(np.exp(y / R)) - np.pi / 2) return pd.Series([x, y]) def get_coordinates(pdf_list): sites_list = [] for lake in pdf_list: url_pdf = 'https:' + lake response_pdf = requests.get(url_pdf) bytes_io = io.BytesIO(response_pdf.content) with pdfplumber.open(bytes_io) as pdf: page = pdf.pages[0] text = page.extract_text() site = text.split('\n')[1].split(' ')[-1].split('’')[-1].replace('-', ' ').title().replace('Sure', 'Sûre').strip() for page in pdf.pages: tables = page.extract_table() if tables and ('baignade' in tables[0][0]): headers = tables[0] headers = headers[:3] headers.append('Sector') headers.append('Lake') i = 1 for table in tables[1:]: table = table[:3] if (site == 'Weiswampach') or (site == 'Remerschen'): table.append('Zone' + ' ' + str(i)) elif site == 'Echternach': table.append('Designated Zone') else: table.append(table[0].split(' ')[1].strip()) table.append(site) sites_list.append(table) i += 1 df = pd.DataFrame(sites_list, columns = headers) df = df.dropna() df = df.iloc[:, 1 : ] df = df.iloc[:, ::-1] df.columns = ['Lake', 'Sector', 'Y', 'X'] df[['Y', 'X']] = df[['Y', 'X']].apply(pd.to_numeric, errors='coerce') df = df.drop_duplicates(subset = ['Lake', 'Sector'], keep = 'last').reset_index(drop = True) return df def file_download(): df = pd.read_html(url)[0] response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') df['images'] = [tag.find("img")["src"] for tag in soup.select("td:has(img)")] df['URL coordinates'] = [tag.find("a")["href"] for tag in soup.select("td:has(a)") if 'geoportail' in tag.find("a")["href"]] pdf_list = [tag.find("a")["href"] for tag in soup.select("td:has(a)") if 'pdf' in tag.find("a")["href"]] df_coord = get_coordinates(pdf_list) df.columns = ['Lake', 'Sector', 'Water Quality', 'Swimming allowed', 'Reason for ban', 'Traffic lights', 'URL coordinates'] name_trim = ['Lac de la ', 'Lac de ', 'Etangs de ', 'Lac d\''] quality_dict = {'Excellente': 'Excellent', 'Bonne': 'Good', 'Suffisante': 'Adequate', 'Insuffisante': 'Inadequate'} df['Water Quality'] = df['Water Quality'].map(quality_dict).fillna(df['Water Quality']) df['Lake'] = df['Lake'].str.replace('|'.join(name_trim), '', regex=True) df['Lake'] = df['Lake'].str.split('(').str[0].str.strip() df['Sector'] = df['Sector'].astype(str).apply(lambda x: 'Designated Zone' if 'baignade' in x else x) df['Reason for ban'] = df['Reason for ban'].astype(str).apply(lambda x: 'nan' if '* Les informations ' in x else x) df['Reason for ban'] = df['Reason for ban'].replace({'nan': 'No ban'}) df['Swimming allowed'] = df['Swimming allowed'].astype('string') df.loc[df['Traffic lights'].str.contains('greng'), 'Swimming allowed'] = 'Yes' df.loc[df['Traffic lights'].str.contains('roud'), 'Swimming allowed'] = 'No' df = df.fillna('N/A') df[['long', 'lat']] = df['URL coordinates'].apply(extract_coordinates) df[['long', 'lat']] = df[['long', 'lat']].apply(pd.to_numeric, errors='coerce') df = df.reset_index(drop = True) df = pd.merge(left=df, right=df_coord, how='left', left_on=['Lake', 'Sector'], right_on=['Lake', 'Sector']) df.loc[df['long']==0, 'long'] = np.nan df.loc[df['lat']==0, 'lat'] = np.nan df['long'] = df['long'].fillna(df['X']) df['lat'] = df['lat'].fillna(df['Y']) df.drop(columns=['Traffic lights', 'URL coordinates', 'X', 'Y'], inplace=True) df.to_csv(file_name, index=False) return df def load_data(force_refresh=False): if force_refresh or (not os.path.exists(file_name)) or ((time.time() - os.path.getmtime(file_name)) > 3600): return file_download() return pd.read_csv(file_name) def create_map(force_refresh=False): df = load_data(force_refresh) # Create base map with Luxembourg coordinates if df.empty: m = folium.Map(location=[49.8153, 6.1296], zoom_start=9) else: m = folium.Map(location=[df['lat'].mean(), df['long'].mean()], zoom_start=9) # Add markers for _, row in df.iterrows(): color = 'green' if row['Swimming allowed'] == 'Yes' else \ 'red' if row['Swimming allowed'] == 'No' else 'gray' popup_text = f""" Lake: {row['Lake']}
Sector: {row['Sector']}
Latitude: {row['lat']:.6f}
Longitude: {row['long']:.6f}
Water Quality: {row['Water Quality']}
Swimming allowed: {row['Swimming allowed']}
Reason for ban: {row['Reason for ban']} """ folium.CircleMarker( location=[row['lat'], row['long']], radius=8, color=color, fill=True, fill_color=color, fill_opacity=0.7, popup=folium.Popup(popup_text, max_width=300) ).add_to(m) # Use OpenStreetMap tiles folium.TileLayer('openstreetmap').add_to(m) # Remove attribution completely m.get_root().html.add_child(folium.Element(""" """)) # Return HTML representation return m._repr_html_() # Create Gradio interface with gr.Blocks(title="LuxSplash") as app: gr.Markdown("# 🏊‍♂️ LuxSplash") gr.Markdown("[Freedom Luxembourg](https://freeletz.lu)") with gr.Row(): refresh_btn = gr.Button("Refresh Data", variant="primary") map_html = gr.HTML() # Initial load app.load(fn=lambda: create_map(False), inputs=None, outputs=map_html) # Refresh functionality refresh_btn.click( fn=lambda: create_map(True), inputs=None, outputs=map_html ) gr.Markdown( "Data sourced from the official Luxembourg government website, the only authoritative source for bathing site information: " "[eau.gouvernement.lu](https://eau.gouvernement.lu/fr/domaines-activite/eauxbaignade/sites-de-baignade.html )" ) if __name__ == "__main__": app.launch()