File size: 11,598 Bytes
d423a9d
f153d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d423a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f153d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d423a9d
 
 
 
f153d51
d423a9d
 
 
 
f153d51
d423a9d
 
 
 
 
 
f153d51
d423a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f153d51
 
 
d423a9d
 
 
 
 
 
 
f153d51
 
 
 
 
 
d423a9d
f153d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d423a9d
f153d51
d423a9d
f153d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d423a9d
f153d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d423a9d
 
 
f153d51
d423a9d
 
 
f153d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d423a9d
f153d51
 
 
 
 
 
 
d423a9d
f153d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d423a9d
 
f153d51
 
 
 
 
 
d423a9d
f153d51
 
d423a9d
 
f153d51
 
 
 
 
d423a9d
f153d51
d423a9d
 
f153d51
 
 
 
 
 
 
 
 
 
 
d423a9d
 
f153d51
 
 
 
 
 
d423a9d
f153d51
 
 
 
 
 
 
d423a9d
f153d51
 
 
 
d423a9d
f153d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
### app_fixed.py ###

import gradio as gr
import pandas as pd
import numpy as np
import json
from datetime import datetime, timezone

import geopy
from geopy import distance
from geopy.geocoders import Nominatim
import srtm
import requests
import requests_cache
import openmeteo_requests
from retry_requests import retry
import plotly.graph_objects as go


# --- GLOBAL SETUP ---

elevation_data = srtm.get_data()
with open("weather_icons_custom.json", "r") as f:
	icons = json.load(f)

cache_session = requests_cache.CachedSession(".cache", expire_after=3600)
retry_session = retry(cache_session, retries=5, backoff_factor=0.2)
openmeteo = openmeteo_requests.Client(session=retry_session)
geolocator = Nominatim(user_agent="snow_finder")

OVERPASS_URL = "https://maps.mail.ru/osm/tools/overpass/api/interpreter"
ICON_URL = "https://raw.githubusercontent.com/basmilius/weather-icons/refs/heads/dev/production/fill/svg/"

DEFAULT_LAT, DEFAULT_LON = 49.6116, 6.1319


# --- UTILS ---

def compute_bbox(lat, lon, dist_km):
	"""Compute bounding box more reliably for any location."""
	# Convert km to degrees (rough approximation)
	# At equator: 1 degree ≈ 111 km
	lat_delta = dist_km / 111.0
	lon_delta = dist_km / (111.0 * np.cos(np.radians(lat)))
	
	south = lat - lat_delta
	north = lat + lat_delta
	west = lon - lon_delta
	east = lon + lon_delta
	
	# Ensure longitude wraps properly
	if west < -180:
		west += 360
	if east > 180:
		east -= 360
	
	# Ensure latitude stays in valid range
	south = max(south, -90)
	north = min(north, 90)
	
	return f"{south},{west},{north},{east}"


def get_elevation_from_srtm(lat, lon):
	"""Get elevation from SRTM if within coverage area."""
	if lat is None or lon is None:
		return None
	
	# SRTM coverage: 60°N to 56°S
	if -56 <= lat <= 60:
		try:
			alt = elevation_data.get_elevation(lat, lon)
			if alt is not None and alt > 0:
				return alt
		except Exception as ex:
			print(f"SRTM error for {lat},{lon}: {ex}")
	
	return None


def get_peaks_from_overpass(lat, lon, dist_km):
	"""Query Overpass API for nearby peaks and hills."""
	bbox = compute_bbox(lat, lon, dist_km)
	query = f"""
		[out:json];
		(
		  nwr[natural=peak]({bbox});
		  nwr[natural=hill]({bbox});
		);
		out body;
	"""
	try:
		r = requests.get(OVERPASS_URL, params={"data": query}, timeout=30)
		r.raise_for_status()
		data = r.json()
	except Exception as e:
		print(f"Error fetching peaks: {e}")
		return pd.DataFrame()

	peaks = {"name": [], "latitude": [], "longitude": [], "altitude": []}
	skipped = 0
	processed = 0
	max_peaks = 100  # Limit processing to avoid slowdowns
	
	for e in data.get("elements", []):
		# Stop if we've processed enough peaks
		if processed >= max_peaks:
			break
			
		lat_e, lon_e = e.get("lat"), e.get("lon")
		
		# Skip elements without valid coordinates
		if lat_e is None or lon_e is None:
			skipped += 1
			continue
			
		tags = e.get("tags", {})
		alt = None
		
		# Strategy 1: Try to get elevation from OSM tag first
		ele = tags.get("ele")
		if ele and str(ele).replace(".", "").replace("-", "").isnumeric():
			alt = float(ele)
		
		# Strategy 2: If no OSM elevation, try SRTM as fallback
		if alt is None or alt <= 10:
			alt = get_elevation_from_srtm(lat_e, lon_e)
		
		# Skip peaks if both strategies failed to produce valid elevation
		if alt is None or alt <= 10:
			skipped += 1
			continue
		
		peaks["latitude"].append(lat_e)
		peaks["longitude"].append(lon_e)
		peaks["name"].append(tags.get("name", "Unnamed Peak/Hill"))
		peaks["altitude"].append(alt)
		processed += 1
	
	if skipped > 0:
		print(f"Skipped {skipped} peaks without complete data (coordinates or elevation)")
	if processed >= max_peaks:
		print(f"Reached limit of {max_peaks} peaks processed")

	if not peaks["latitude"]:
		return pd.DataFrame()

	df = pd.DataFrame(peaks)
	df["altitude"] = df["altitude"].round(0).astype(int)
	
	df["distance_m"] = df.apply(
		lambda r: distance.distance((r["latitude"], r["longitude"]), (lat, lon)).m, axis=1
	)
	return df


# --- WEATHER FETCH (STRING PARAMS VERSION) ---

def get_weather_for_peaks_iteratively(df_peaks, min_snow_cm, max_results=20, max_requests=100):
	"""Fetch weather for peaks with all params as strings to avoid iteration errors."""
	if df_peaks.empty:
		return pd.DataFrame()

	url = "https://api.open-meteo.com/v1/forecast"
	results, requests_made = [], 0

	for _, row in df_peaks.iterrows():
		if len(results) >= max_results or requests_made >= max_requests:
			break

		params = {
			"latitude": str(row["latitude"]),
			"longitude": str(row["longitude"]),
			"elevation": str(row["altitude"]),
			"hourly": "temperature_2m,is_day,weather_code,snow_depth",
			"forecast_days": "1",
			"timezone": "auto",
		}

		try:
			responses = openmeteo.weather_api(url, params=params)
			if not responses:
				continue
			response = responses[0]
			
			hourly = response.Hourly()
			if hourly is None:
				continue

			idx = 0

			temp_c = float(hourly.Variables(0).ValuesAsNumpy()[idx])
			is_day = int(hourly.Variables(1).ValuesAsNumpy()[idx])
			weather_code = int(hourly.Variables(2).ValuesAsNumpy()[idx])
			snow_depth_m = float(hourly.Variables(3).ValuesAsNumpy()[idx])
			snow_depth_cm = snow_depth_m * 100

			if snow_depth_cm >= min_snow_cm:
				results.append({
					**row.to_dict(),
					"temp_c": temp_c,
					"is_day": is_day,
					"weather_code": weather_code,
					"snow_depth_m": snow_depth_m,
					"snow_depth_cm": int(np.round(snow_depth_cm, 0))
				})

		except Exception as e:
			print(f"Error fetching weather for {row['name']} at {row['latitude']},{row['longitude']}: {e}")

		requests_made += 1

	return pd.DataFrame(results)


# --- POST-PROCESSING ---

def format_weather_data(df):
	if df.empty:
		return df

	def icon_mapper(row):
		code = str(int(row["weather_code"]))
		tod = "day" if row["is_day"] == 1 else "night"
		info = icons.get(code, {}).get(tod, {})
		icon_filename = info.get("icon", "")
		description = info.get("description", "Unknown")
		return ICON_URL + icon_filename, description, icon_filename

	df[["weather_icon_url", "weather_desc", "weather_icon_name"]] = df.apply(
		icon_mapper, axis=1, result_type="expand"
	)
	df["distance_km"] = (df["distance_m"] / 1000).round(1)
	df["temp_c_str"] = df["temp_c"].round(0).astype(int).astype(str) + "°C"
	return df


def geocode_location(location_text):
	try:
		loc = geolocator.geocode(location_text, timeout=10)
		if loc:
			return loc.latitude, loc.longitude, f"Found: {loc.address}"
		return None, None, f"Location '{location_text}' not found."
	except Exception as e:
		return None, None, f"Geocoding error: {e}"


# --- CORE LOGIC ---

def find_snowy_peaks(min_snow_cm, radius_km, lat, lon):
	if lat is None or lon is None:
		fig = create_empty_map(DEFAULT_LAT, DEFAULT_LON)
		fig.update_layout(title_text="Enter valid coordinates.")
		return fig, "Please enter coordinates."

	if not (-90 <= lat <= 90 and -180 <= lon <= 180):
		fig = create_empty_map(DEFAULT_LAT, DEFAULT_LON)
		fig.update_layout(title_text="Invalid coordinates.")
		return fig, "Coordinates out of range."

	df_peaks = get_peaks_from_overpass(lat, lon, radius_km)
	if df_peaks.empty:
		fig = create_map_with_center(lat, lon)
		fig.update_layout(title_text=f"No peaks found within {radius_km} km.")
		return fig, f"No peaks found within {radius_km} km."

	df_peaks = df_peaks.sort_values("distance_m").reset_index(drop=True)
	df_weather = get_weather_for_peaks_iteratively(df_peaks, min_snow_cm)

	if df_weather.empty:
		fig = create_map_with_center(lat, lon)
		fig.update_layout(title_text=f"No snowy peaks ≥ {min_snow_cm} cm.")
		return fig, f"No peaks met the ≥ {min_snow_cm} cm snow requirement."

	df_final = format_weather_data(df_weather)
	fig = create_map_with_results(lat, lon, df_final)
	fig.update_layout(title_text=f"Found {len(df_final)} snowy peaks!")
	msg = f"🎉 Showing {len(df_final)} snowy peaks with ≥ {min_snow_cm} cm of snow."
	return fig, msg


# --- MAP HELPERS ---

def create_empty_map(lat, lon):
	fig = go.Figure()
	fig.update_layout(
		map=dict(style="open-street-map", center={"lat": lat, "lon": lon}, zoom=8),
		margin={"r": 0, "t": 40, "l": 0, "b": 0},
		height=1024,
		width=1024,
	)
	return fig


def create_map_with_center(lat, lon):
	fig = go.Figure(
		go.Scattermap(
			lat=[lat],
			lon=[lon],
			mode="markers",
			marker=dict(size=24, color="white", opacity=0.8),
			hoverinfo="skip",
		)
	)
	fig.add_trace(
		go.Scattermap(
			lat=[lat],
			lon=[lon],
			mode="markers",
			marker=dict(size=12, color="red"),
			text=["Search Center"],
			hoverinfo="text",
		)
	)
	fig.update_layout(
		map=dict(style="open-street-map", center={"lat": lat, "lon": lon}, zoom=8),
		margin={"r": 0, "t": 40, "l": 0, "b": 0},
		height=1024,
		width=1024,
	)
	return fig


def create_map_with_results(lat, lon, df_final):
	fig = go.Figure()
	
	# Add white halos for peaks
	fig.add_trace(
		go.Scattermap(
			lat=df_final["latitude"],
			lon=df_final["longitude"],
			mode="markers",
			marker=dict(size=24, color="white", opacity=0.8),
			hoverinfo="skip",
		)
	)
	
	# Add peak markers with weather info in hover (no HTML icons)
	fig.add_trace(
		go.Scattermap(
			lat=df_final["latitude"],
			lon=df_final["longitude"],
			mode="markers",
			marker=dict(size=12, color="blue"),
			customdata=df_final[
				["name", "altitude", "distance_km", "snow_depth_cm", "weather_desc", 
				 "temp_c_str"]
			],
			hovertemplate=(
				"<b>%{customdata[0]}</b><br>"
				"Altitude: %{customdata[1]} m<br>"
				"Distance: %{customdata[2]} km<br>"
				"<b>❄️ Snow: %{customdata[3]} cm</b><br>"
				"Weather: %{customdata[4]}<br>"
				"🌡 Temp: %{customdata[5]}<extra></extra>"
			),
		)
	)
	
	# Add search center with halo
	fig.add_trace(
		go.Scattermap(
			lat=[lat],
			lon=[lon],
			mode="markers",
			marker=dict(size=24, color="white", opacity=0.8),
			hoverinfo="skip",
		)
	)
	fig.add_trace(
		go.Scattermap(
			lat=[lat],
			lon=[lon],
			mode="markers",
			marker=dict(size=12, color="red"),
			text=["Search Center"],
			hoverinfo="text",
		)
	)
	
	fig.update_layout(
		map=dict(style="open-street-map", center={"lat": lat, "lon": lon}, zoom=9),
		margin={"r": 0, "t": 40, "l": 0, "b": 0},
		height=1024,
		width=1024,
		showlegend=False,
	)
	return fig


# --- GRADIO UI ---

with gr.Blocks(theme=gr.themes.Soft(), title="Snow Finder") as demo:
	gr.Markdown("# ☃️ Snow Finder for Families")
	gr.Markdown("Find nearby snowy peaks perfect for sledding and snowmen!")

	with gr.Row():
		with gr.Column(scale=1):
			location_search = gr.Textbox(label="Search Location")
			search_location_btn = gr.Button("🔍 Find Location")

			lat_input = gr.Number(value=DEFAULT_LAT, label="Latitude", precision=4)
			lon_input = gr.Number(value=DEFAULT_LON, label="Longitude", precision=4)
			snow_slider = gr.Radio(choices=[1, 2, 3, 4, 5, 6], value=1, label="Min Snow (cm)")
			radius_slider = gr.Radio(choices=[10, 20, 30, 40, 50, 60], value=30, label="Radius (km)")
			search_button = gr.Button("❄️ Find Snow!", variant="primary")
			status_output = gr.Textbox(lines=4, interactive=False)

		with gr.Column(scale=2):
			init_fig = create_map_with_center(DEFAULT_LAT, DEFAULT_LON)
			init_fig.update_layout(title_text="Luxembourg City – Click 'Find Snow!' to start")
			map_plot = gr.Plot(init_fig, label="Map")

	search_location_btn.click(
		fn=geocode_location, inputs=[location_search], outputs=[lat_input, lon_input, status_output]
	)
	search_button.click(
		fn=find_snowy_peaks,
		inputs=[snow_slider, radius_slider, lat_input, lon_input],
		outputs=[map_plot, status_output],
	)

if __name__ == "__main__":
	demo.launch()