File size: 15,219 Bytes
d95ff5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2bdc87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d95ff5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#!/usr/bin/env python
"""
Script to quantize the huihui-ai/Huihui-Fara-7B-abliterated model with Qwen2.5-VL architecture support
Uses sequential onloading for memory efficiency.
"""

import base64
from io import BytesIO
import torch
from datasets import load_dataset
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration

from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier, QuantizationModifier
from llmcompressor.modifiers.awq import AWQModifier, AWQMapping
from llmcompressor.utils import dispatch_for_generation


def create_qwen2_5_vl_data_collator():
    """Create a data collator for Qwen2.5-VL models that handles multimodal inputs."""
    def data_collator(batch):
        assert len(batch) == 1
        return {key: torch.tensor(value) if isinstance(value, (list, int, float)) else value 
                for key, value in batch[0].items()}
    return data_collator


def create_qwen2_5_vl_preprocessing_fn(processor, max_sequence_length: int = 2048):
    """Create a preprocessing function for Qwen2.5-VL datasets."""
    def preprocess_and_tokenize(example):
        # Handle different image formats
        if 'image' in example:
            # Process image
            if hasattr(example['image'], 'save'):
                # PIL Image object
                buffered = BytesIO()
                example["image"].save(buffered, format="PNG")
                encoded_image = base64.b64encode(buffered.getvalue())
                encoded_image_text = encoded_image.decode("utf-8")
                base64_qwen = f"data:image;base64,{encoded_image_text}"
            else:
                # Already a string or other format
                base64_qwen = str(example["image"])
        else:
            # If there's no image field, try 'img' or similar
            img_key = None
            for key in example.keys():
                if 'image' in key.lower() or 'img' in key.lower():
                    img_key = key
                    break
            if img_key:
                if hasattr(example[img_key], 'save'):
                    buffered = BytesIO()
                    example[img_key].save(buffered, format="PNG")
                    encoded_image = base64.b64encode(buffered.getvalue())
                    encoded_image_text = encoded_image.decode("utf-8")
                    base64_qwen = f"data:image;base64,{encoded_image_text}"
                else:
                    base64_qwen = str(example[img_key])
            else:
                # If no image, create a simple text-only example
                messages = [
                    {
                        "role": "user",
                        "content": [
                            {"type": "text", "text": example.get('text', example.get('content', 'What can you tell me about this?'))},
                        ],
                    }
                ]
                text = processor.apply_chat_template(
                    messages, tokenize=False, add_generation_prompt=True
                )
                
                return processor(
                    text=[text],
                    padding=False,
                    max_length=max_sequence_length,
                    truncation=True,
                )

        # Create message with image
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image", "image": base64_qwen},
                    {"type": "text", "text": "What does the image show?"},
                ],
            }
        ]
        text = processor.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )
        image_inputs, video_inputs = process_vision_info(messages)

        # tokenize
        return processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=False,
            max_length=max_sequence_length,
            truncation=True,
        )
    
    return preprocess_and_tokenize


def get_qwen2_5_vl_quantization_recipe(method: str, scheme: str = "W4A16"):
    """
    Creates the appropriate quantization recipe for Qwen2.5-VL models.
    
    Args:
        method: Quantization method ("GPTQ", "AWQ", or "FP8")
        scheme: Quantization scheme (e.g., "W4A16", "W8A8", "FP8")
    
    Returns:
        List of modifiers for the quantization recipe
    """
    if method == "GPTQ":
        return [
            GPTQModifier(
                targets="Linear",
                scheme=scheme,
                ignore=["lm_head", "re:visual.*", "re:model.visual.*"],
                sequential_targets=["Qwen2_5_VLDecoderLayer"],  # This enables sequential onloading
            ),
        ]
    elif method == "AWQ":
        # Create AWQ mappings for Qwen2.5-VL architecture
        mappings = [
            AWQMapping(
                "re:.*input_layernorm", ["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"]
            ),
            AWQMapping("re:.*v_proj", ["re:.*o_proj"]),
            AWQMapping(
                "re:.*post_attention_layernorm", ["re:.*gate_proj", "re:.*up_proj"]
            ),
            AWQMapping("re:.*up_proj", ["re:.*down_proj"]),
        ]
        return [
            AWQModifier(
                ignore=["lm_head", "re:visual.*", "re:model.visual.*"],
                scheme="W4A16_ASYM" if scheme == "W4A16" else scheme,
                targets=["Linear"],
                mappings=mappings,
                sequential_targets=["Qwen2_5_VLDecoderLayer"],  # Sequential onloading for memory efficiency
            ),
        ]
    elif method == "FP8":
        return [
            QuantizationModifier(
                scheme="FP8", 
                targets="Linear", 
                ignore=["lm_head", "re:visual.*", "re:model.visual.*"]
            )
        ]
    else:
        raise ValueError(f"Unsupported quantization method: {method}")


def quantize_huihui_fara_model(
    model_id: str = "huihui-ai/Huihui-Fara-7B-abliterated",
    quantization_method: str = "GPTQ",
    output_dir: str = None,
    dataset_id: str = "wikitext",
    dataset_config: str = "wikitext-2-raw-v1",
    dataset_split: str = "train[:1%]",
    num_calibration_samples: int = 64,
    max_sequence_length: int = 512,
    scheme: str = "W4A16",
    trust_remote_code: bool = True,
):
    """
    Quantizes the huihui-ai/Huihui-Fara-7B-abliterated model with proper Qwen2.5-VL architecture support.
    
    Args:
        model_id: Hugging Face model ID to quantize
        quantization_method: Method to use ("GPTQ", "AWQ", or "FP8")
        output_dir: Directory to save the quantized model
        dataset_id: Dataset ID for calibration
        dataset_config: Dataset config for calibration
        dataset_split: Dataset split for calibration
        num_calibration_samples: Number of samples to use for calibration
        max_sequence_length: Maximum sequence length for processing
        scheme: Quantization scheme (e.g., "W4A16", "W8A8")
        trust_remote_code: Whether to trust remote code in model loading
    
    Returns:
        Quantized model
    """
    print(f"Loading model: {model_id}")

    # Handle different device scenarios properly
    if torch.cuda.is_available():
        try:
            model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
                model_id,
                torch_dtype=torch.float16,  # Use float16 to save memory
                device_map="auto",  # Auto device mapping for memory efficiency
                trust_remote_code=trust_remote_code
            )
        except RuntimeError as e:
            if "out of memory" in str(e).lower() or "offload_dir" in str(e):
                print(f"Memory issue detected, using offloading: {e}")
                import tempfile
                with tempfile.TemporaryDirectory() as temp_dir:
                    model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
                        model_id,
                        torch_dtype=torch.float16,
                        device_map="auto",
                        offload_folder=temp_dir,
                        max_memory={0: "24GB", "cpu": "48GB"},
                        trust_remote_code=trust_remote_code
                    )
            else:
                raise
    else:
        # CPU only
        model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
            model_id,
            torch_dtype=torch.float32,  # Use float32 on CPU
            device_map="cpu",
            trust_remote_code=trust_remote_code
        )
    
    print(f"Loading processor for: {model_id}")
    processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=trust_remote_code)
    
    # If output directory not specified, create one based on model and method
    if not output_dir:
        model_name = model_id.rstrip("/").split("/")[-1]
        output_dir = f"{model_name}-{scheme.replace(':', '-')}-{quantization_method}"
    
    print(f"Output directory: {output_dir}")
    
    # Load dataset and preprocess
    print(f"Loading dataset: {dataset_id}")
    try:
        # Try to load a multimodal dataset first
        ds = load_dataset("lmms-lab/flickr30k", split="test[:64]")
        print("Using multimodal dataset for calibration")
        
        preprocess_fn = create_qwen2_5_vl_preprocessing_fn(processor, max_sequence_length)
        ds = ds.map(preprocess_fn, remove_columns=ds.column_names)
    except Exception as e:
        print(f"Failed to load multimodal dataset: {e}, falling back to text-only dataset")
        # If multimodal dataset fails, use text-only
        ds = load_dataset(dataset_id, dataset_config, split=dataset_split)
        ds = ds.shuffle(seed=42)
        
        # Text-only preprocessing
        def text_only_preprocess(example):
            text = example.get('text', example.get('content', str(example)))
            if not isinstance(text, str):
                text = str(text)
            # Limit text length to avoid exceeding max sequence length
            text = text[:500] + "..." if len(text) > 500 else text
            messages = [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": text},
                    ],
                }
            ]
            prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            return processor(text=[prompt], padding=False, max_length=max_sequence_length, truncation=True)
        
        ds = ds.map(text_only_preprocess, remove_columns=ds.column_names)
    
    # Define data collator
    data_collator = create_qwen2_5_vl_data_collator()
    
    # Create recipe
    recipe = get_qwen2_5_vl_quantization_recipe(quantization_method, scheme)
    
    print(f"Starting quantization with method: {quantization_method}")
    print(f"Using recipe: {recipe}")
    print(f"Using sequential targets: {[mod.sequential_targets if hasattr(mod, 'sequential_targets') else 'N/A' for mod in recipe]}")
    
    # Perform oneshot quantization with sequential onloading for memory efficiency
    oneshot(
        model=model,
        tokenizer=processor,  # Use processor as tokenizer for Qwen2.5-VL
        dataset=ds,
        recipe=recipe,
        max_seq_length=max_sequence_length,
        num_calibration_samples=num_calibration_samples,
        trust_remote_code_model=trust_remote_code,
        data_collator=data_collator,
        save_compressed=True,
        output_dir=output_dir,
    )
    
    print(f"Quantization completed! Model saved to: {output_dir}")
    
    # Save the processor as well
    processor.save_pretrained(output_dir)
    
    return model


def test_quantized_model(model, processor, max_sequence_length: int = 2048):
    """
    Tests the quantized model with a sample generation.
    """
    print("========== SAMPLE GENERATION ==============")
    try:
        dispatch_for_generation(model)
        # Simple text-only test first
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "Hello, how are you today?"},
                ],
            }
        ]
        prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
        inputs = processor(
            text=[prompt],
            padding=False,
            max_length=max_sequence_length,
            truncation=True,
            return_tensors="pt",
        ).to(model.device)
        
        output = model.generate(**inputs, max_new_tokens=50)
        result = processor.decode(output[0], skip_special_tokens=True)
        print(result)
        print("==========================================")
        return result
    except Exception as e:
        print(f"Test generation failed: {e}")
        import traceback
        traceback.print_exc()
        return None


def main():
    """
    Main function to quantize the Huihui-Fara model.
    """
    import argparse
    
    parser = argparse.ArgumentParser(description="Quantize huihui-ai/Huihui-Fara-7B-abliterated model")
    parser.add_argument("--model_id", type=str, default="huihui-ai/Huihui-Fara-7B-abliterated", 
                        help="Model ID to quantize")
    parser.add_argument("--method", type=str, choices=["GPTQ", "AWQ", "FP8"], 
                        default="GPTQ", help="Quantization method to use")
    parser.add_argument("--output_dir", type=str, default=None, 
                        help="Output directory for quantized model")
    parser.add_argument("--dataset_id", type=str, default="wikitext",
                        help="Dataset for calibration (default: wikitext)")
    parser.add_argument("--scheme", type=str, default="W4A16", 
                        help="Quantization scheme (e.g., W4A16, W8A8)")
    parser.add_argument("--num_samples", type=int, default=64, 
                        help="Number of calibration samples")
    
    args = parser.parse_args()
    
    print(f"Starting quantization of {args.model_id} using {args.method}")
    print("Note: This may take a while and will use sequential onloading for memory efficiency...")
    
    try:
        # Quantize the model
        quantized_model = quantize_huihui_fara_model(
            model_id=args.model_id,
            quantization_method=args.method,
            output_dir=args.output_dir,
            dataset_id=args.dataset_id,
            num_calibration_samples=args.num_samples,
            scheme=args.scheme
        )
        
        # Test the model
        processor = AutoProcessor.from_pretrained(args.model_id, trust_remote_code=True)
        test_quantized_model(quantized_model, processor)
        
        print(f"✅ Successfully quantized {args.model_id} with {args.method}")
        print(f"Model saved to: {args.output_dir or args.model_id.split('/')[-1] + f'-{args.scheme}-{args.method}'}")
        
    except Exception as e:
        print(f"❌ Quantization failed: {e}")
        import traceback
        traceback.print_exc()


if __name__ == "__main__":
    main()