Spaces:
Running
Running
Commit
·
f9314a9
1
Parent(s):
fa74d4d
changes - logging
Browse files- .gitignore +2 -1
- app.py +23 -16
- requirements.txt +2 -1
.gitignore
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
-
.venv
|
|
|
|
|
|
| 1 |
+
.venv
|
| 2 |
+
.env
|
app.py
CHANGED
|
@@ -15,8 +15,13 @@ from google.oauth2 import service_account
|
|
| 15 |
import os
|
| 16 |
from langchain_groq import ChatGroq
|
| 17 |
import groq
|
|
|
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
GOOGLESHEETS_CREDENTIALS = os.getenv("GOOGLESHEETS_CREDENTIALS")
|
| 21 |
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
|
| 22 |
MODEL = "meta-llama/llama-4-scout-17b-16e-instruct"
|
|
@@ -24,11 +29,11 @@ MODEL = "meta-llama/llama-4-scout-17b-16e-instruct"
|
|
| 24 |
class TransactionParser(BaseModel):
|
| 25 |
"""This Pydantic class is used to parse the transaction message."""
|
| 26 |
|
| 27 |
-
amount: str = Field(description="The amount of the transaction strictly in decimal format.
|
| 28 |
dr_or_cr: str = Field(description="Identify if the transaction was debit (spent) or credit (received). Strictly choose one of the values - Debit or Credit")
|
| 29 |
-
receiver: str = Field(description="The recipient of the transaction. Identify the Merchant Name from the
|
| 30 |
category: str = Field(description="The category of the transaction. The category of the transaction is linked to the Merchant Name. Strictly choose from one the of values - Shopping,EMI,Education,Miscellaneous,Grocery,Utility,House Help,Travel,Transport")
|
| 31 |
-
transaction_date: str = Field(description="
|
| 32 |
transaction_origin: str = Field(description="The origin of the transaction. Provide the card or account number as well.")
|
| 33 |
|
| 34 |
class AgentState(TypedDict):
|
|
@@ -38,8 +43,8 @@ class Agent:
|
|
| 38 |
def __init__(self, model, system=""):
|
| 39 |
self.system = system
|
| 40 |
graph = StateGraph(AgentState)
|
| 41 |
-
graph.add_node("classify_txn_type", self.classify_txn_type, retry=RetryPolicy(retry_on=[groq.
|
| 42 |
-
graph.add_node("parse_message", self.parse_message, retry=RetryPolicy(retry_on=[groq.
|
| 43 |
graph.add_node("write_message", self.write_message)
|
| 44 |
graph.add_conditional_edges(
|
| 45 |
"classify_txn_type",
|
|
@@ -53,17 +58,17 @@ class Agent:
|
|
| 53 |
self.model = model
|
| 54 |
|
| 55 |
def classify_txn_type(self, state: AgentState) -> AgentState:
|
| 56 |
-
print("Classifying transaction type...")
|
| 57 |
messages = state["messages"]
|
| 58 |
if self.system:
|
| 59 |
messages = [SystemMessage(content=self.system)] + messages
|
| 60 |
|
| 61 |
message = self.model.invoke(messages)
|
| 62 |
-
print("Classifying transaction type completed.")
|
| 63 |
return {"messages": [message]}
|
| 64 |
|
| 65 |
def parse_message(self, state: AgentState) -> AgentState:
|
| 66 |
-
print("Parsing transaction message...")
|
| 67 |
message = state["messages"][0]#.content
|
| 68 |
system = """
|
| 69 |
You are a helpful assistant skilled at parsing transaction messages and providing structured responses.
|
|
@@ -73,17 +78,18 @@ class Agent:
|
|
| 73 |
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])
|
| 74 |
chain = prompt | self.model.with_structured_output(TransactionParser)
|
| 75 |
result = chain.invoke({"topic": message})
|
| 76 |
-
print("Parsing transaction message completed.")
|
| 77 |
return {"messages": [result]}
|
| 78 |
|
| 79 |
def write_message(self, state: AgentState) -> AgentState:
|
| 80 |
-
print("Writing transaction message to Google Sheets...")
|
| 81 |
result = state["messages"][-1]
|
| 82 |
SCOPES = ('https://www.googleapis.com/auth/spreadsheets', 'https://www.googleapis.com/auth/drive')
|
|
|
|
| 83 |
service_account_info = json.loads(GOOGLESHEETS_CREDENTIALS)
|
| 84 |
-
|
| 85 |
-
client = pygsheets.authorize(custom_credentials=
|
| 86 |
-
worksheet = client.open_by_url(
|
| 87 |
wk = worksheet[0]
|
| 88 |
# Get number of rows in the worksheet
|
| 89 |
df = wk.get_as_df(start='A1', end='G999')
|
|
@@ -95,7 +101,7 @@ class Agent:
|
|
| 95 |
wk.update_value(f'E{nrows+2}', result.transaction_date)
|
| 96 |
wk.update_value(f'F{nrows+2}', result.transaction_origin)
|
| 97 |
wk.update_value(f'G{nrows+2}', state["messages"][0])
|
| 98 |
-
print("Writing transaction message to Google Sheets completed.")
|
| 99 |
return {"messages": ["Transaction Completed"]}
|
| 100 |
|
| 101 |
def check_txn_and_decide(self, state: AgentState):
|
|
@@ -109,7 +115,8 @@ class Agent:
|
|
| 109 |
prompt = """You are a smart assistant adept at classifying different messages. \
|
| 110 |
You will be penalized heavily for incorrect classification. \
|
| 111 |
Your task is to classify the message into one of the following categories: \
|
| 112 |
-
Transaction, OTP, Promotional, Scheduled. \
|
|
|
|
| 113 |
Output the classification in a structured format like below. \
|
| 114 |
{"classification": "OTP"} \
|
| 115 |
"""
|
|
|
|
| 15 |
import os
|
| 16 |
from langchain_groq import ChatGroq
|
| 17 |
import groq
|
| 18 |
+
from datetime import datetime
|
| 19 |
|
| 20 |
+
# Load environment variables
|
| 21 |
+
from dotenv import load_dotenv
|
| 22 |
+
load_dotenv()
|
| 23 |
+
|
| 24 |
+
SHEET_URL = os.getenv("SHEET_URL")
|
| 25 |
GOOGLESHEETS_CREDENTIALS = os.getenv("GOOGLESHEETS_CREDENTIALS")
|
| 26 |
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
|
| 27 |
MODEL = "meta-llama/llama-4-scout-17b-16e-instruct"
|
|
|
|
| 29 |
class TransactionParser(BaseModel):
|
| 30 |
"""This Pydantic class is used to parse the transaction message."""
|
| 31 |
|
| 32 |
+
amount: str = Field(description="The amount of the transaction strictly in decimal format. Do not insert currency symbol.", example="123.45")
|
| 33 |
dr_or_cr: str = Field(description="Identify if the transaction was debit (spent) or credit (received). Strictly choose one of the values - Debit or Credit")
|
| 34 |
+
receiver: str = Field(description="The recipient of the transaction. Identify the Merchant Name from the message text.")
|
| 35 |
category: str = Field(description="The category of the transaction. The category of the transaction is linked to the Merchant Name. Strictly choose from one the of values - Shopping,EMI,Education,Miscellaneous,Grocery,Utility,House Help,Travel,Transport")
|
| 36 |
+
transaction_date: str = Field(description="Use current system date strictly in yyyy-mm-dd format.")
|
| 37 |
transaction_origin: str = Field(description="The origin of the transaction. Provide the card or account number as well.")
|
| 38 |
|
| 39 |
class AgentState(TypedDict):
|
|
|
|
| 43 |
def __init__(self, model, system=""):
|
| 44 |
self.system = system
|
| 45 |
graph = StateGraph(AgentState)
|
| 46 |
+
graph.add_node("classify_txn_type", self.classify_txn_type, retry=RetryPolicy(retry_on=[groq.APIConnectionError], max_attempts=5))
|
| 47 |
+
graph.add_node("parse_message", self.parse_message, retry=RetryPolicy(retry_on=[groq.APIConnectionError], max_attempts=5))
|
| 48 |
graph.add_node("write_message", self.write_message)
|
| 49 |
graph.add_conditional_edges(
|
| 50 |
"classify_txn_type",
|
|
|
|
| 58 |
self.model = model
|
| 59 |
|
| 60 |
def classify_txn_type(self, state: AgentState) -> AgentState:
|
| 61 |
+
print(f"{datetime.now()}: Classifying transaction type...")
|
| 62 |
messages = state["messages"]
|
| 63 |
if self.system:
|
| 64 |
messages = [SystemMessage(content=self.system)] + messages
|
| 65 |
|
| 66 |
message = self.model.invoke(messages)
|
| 67 |
+
print(f"{datetime.now()}: Classifying transaction type completed.")
|
| 68 |
return {"messages": [message]}
|
| 69 |
|
| 70 |
def parse_message(self, state: AgentState) -> AgentState:
|
| 71 |
+
print(f"{datetime.now()}: Parsing transaction message...")
|
| 72 |
message = state["messages"][0]#.content
|
| 73 |
system = """
|
| 74 |
You are a helpful assistant skilled at parsing transaction messages and providing structured responses.
|
|
|
|
| 78 |
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])
|
| 79 |
chain = prompt | self.model.with_structured_output(TransactionParser)
|
| 80 |
result = chain.invoke({"topic": message})
|
| 81 |
+
print(f"{datetime.now()}: Parsing transaction message completed.")
|
| 82 |
return {"messages": [result]}
|
| 83 |
|
| 84 |
def write_message(self, state: AgentState) -> AgentState:
|
| 85 |
+
print(f"{datetime.now()}: Writing transaction message to Google Sheets...")
|
| 86 |
result = state["messages"][-1]
|
| 87 |
SCOPES = ('https://www.googleapis.com/auth/spreadsheets', 'https://www.googleapis.com/auth/drive')
|
| 88 |
+
|
| 89 |
service_account_info = json.loads(GOOGLESHEETS_CREDENTIALS)
|
| 90 |
+
credentials = service_account.Credentials.from_service_account_info(service_account_info, scopes=SCOPES)
|
| 91 |
+
client = pygsheets.authorize(custom_credentials=credentials)
|
| 92 |
+
worksheet = client.open_by_url(SHEET_URL)
|
| 93 |
wk = worksheet[0]
|
| 94 |
# Get number of rows in the worksheet
|
| 95 |
df = wk.get_as_df(start='A1', end='G999')
|
|
|
|
| 101 |
wk.update_value(f'E{nrows+2}', result.transaction_date)
|
| 102 |
wk.update_value(f'F{nrows+2}', result.transaction_origin)
|
| 103 |
wk.update_value(f'G{nrows+2}', state["messages"][0])
|
| 104 |
+
print(f"{datetime.now()}: Writing transaction message to Google Sheets completed.")
|
| 105 |
return {"messages": ["Transaction Completed"]}
|
| 106 |
|
| 107 |
def check_txn_and_decide(self, state: AgentState):
|
|
|
|
| 115 |
prompt = """You are a smart assistant adept at classifying different messages. \
|
| 116 |
You will be penalized heavily for incorrect classification. \
|
| 117 |
Your task is to classify the message into one of the following categories: \
|
| 118 |
+
Transaction, OTP, Promotional, Scheduled, Non-Transaction. \
|
| 119 |
+
Consider Salary Credit, Interest Credit, Redemtions as non-transactional messages.
|
| 120 |
Output the classification in a structured format like below. \
|
| 121 |
{"classification": "OTP"} \
|
| 122 |
"""
|
requirements.txt
CHANGED
|
@@ -4,4 +4,5 @@ langchain-ollama
|
|
| 4 |
langgraph
|
| 5 |
pygsheets
|
| 6 |
pandas
|
| 7 |
-
langchain-groq
|
|
|
|
|
|
| 4 |
langgraph
|
| 5 |
pygsheets
|
| 6 |
pandas
|
| 7 |
+
langchain-groq
|
| 8 |
+
dotenv
|