File size: 6,175 Bytes
9b72f0d 832660f db78b1a 9b72f0d db78b1a 9b72f0d db78b1a 9b72f0d ec2237a 9b72f0d ec2237a 9b72f0d ec2237a 9b72f0d ec2237a 9b72f0d ec2237a 9b72f0d 3624cee 9b72f0d cc1f67c 9b72f0d db78b1a 9b72f0d ec2237a 9b72f0d 832660f 9b72f0d b2847f1 832660f 9b72f0d 832660f 9b72f0d b2847f1 cc1f67c 97ce2e0 9b72f0d db78b1a 9b72f0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import {
AutoModelForCausalLM,
AutoTokenizer,
InterruptableStoppingCriteria,
PreTrainedModel,
PreTrainedTokenizer,
Tensor,
TextStreamer,
} from "@huggingface/transformers";
import { calculateDownloadProgress } from "../../utils/calculateDownloadProgress.ts";
import { MODELS } from "../../utils/models.ts";
import {
type Request,
RequestType,
type Response,
ResponseType,
} from "../types.ts";
interface Pipeline {
tokenizer: PreTrainedTokenizer;
model: PreTrainedModel;
}
let pipeline: Pipeline | null = null;
let initializedModelKey: keyof typeof MODELS | null = null;
let cache: { pastKeyValues: any | null; key: string } = {
pastKeyValues: null,
key: "",
};
let stoppingCriteria: any | null = null;
const getTextGenerationPipeline = async (
modelKey: keyof typeof MODELS,
onDownloadProgress: (percentage: number) => void = () => {}
): Promise<Pipeline> => {
if (pipeline && modelKey === initializedModelKey) return pipeline;
if (pipeline) {
await pipeline.model.dispose();
}
const MODEL = MODELS[modelKey];
const MODEL_FILES = new Map();
for (const [key, value] of Object.entries(MODEL.files)) {
MODEL_FILES.set(key, { loaded: 0, total: value });
}
try {
const tokenizer = await AutoTokenizer.from_pretrained(MODEL.modelId);
const model = await AutoModelForCausalLM.from_pretrained(MODEL.modelId, {
dtype: MODEL.dtype,
device: MODEL.device,
progress_callback: calculateDownloadProgress(
({ percentage }) => onDownloadProgress(percentage),
MODEL_FILES
),
});
pipeline = { tokenizer, model };
initializedModelKey = modelKey;
return pipeline;
} catch (error) {
console.error("Failed to initialize feature extraction pipeline:", error);
throw error;
}
};
const postMessage = (message: Response) => self.postMessage(message);
self.onmessage = async ({ data }: MessageEvent<Request>) => {
if (data.type === RequestType.INITIALIZE_MODEL) {
let lastPercentage = 0;
await getTextGenerationPipeline(data.modelKey, (percentage) => {
if (lastPercentage === percentage) return;
lastPercentage = percentage;
postMessage({
type: ResponseType.INITIALIZE_MODEL,
progress: percentage,
done: false,
requestId: data.requestId,
});
});
postMessage({
type: ResponseType.INITIALIZE_MODEL,
progress: 100,
done: true,
requestId: data.requestId,
});
}
if (data.type === RequestType.GENERATE_MESSAGE_ABORT) {
stoppingCriteria.interrupt();
postMessage({
type: ResponseType.GENERATE_TEXT_ABORTED,
requestId: data.requestId,
});
}
if (data.type === RequestType.GENERATE_MESSAGE) {
const MODEL = MODELS[data.modelKey];
stoppingCriteria = new InterruptableStoppingCriteria();
const { messages, tools, requestId } = data;
const { tokenizer, model } = await getTextGenerationPipeline(data.modelKey);
if (!stoppingCriteria) {
stoppingCriteria = new InterruptableStoppingCriteria();
}
const input = tokenizer.apply_chat_template(messages, {
tools,
add_generation_prompt: true,
return_dict: true,
// @ts-expect-error
enable_thinking: data.enableThinking,
}) as {
input_ids: Tensor;
attention_mask: number[] | number[][] | Tensor;
};
const started = performance.now();
let firstTokenTime: DOMHighResTimeStamp | null = null;
let numTokens = 0;
let tps: number = 0;
const removeEosToken = (content: string): string =>
content.replace(tokenizer.eos_token, "");
const tokenCallbackFunction = () => {
firstTokenTime ??= performance.now();
if (numTokens++ > 0) {
tps = (numTokens / (performance.now() - firstTokenTime)) * 1000;
}
};
const callbackFunction = (chunk: string) => {
postMessage({
type: ResponseType.GENERATE_TEXT_CHUNK,
chunk: removeEosToken(chunk),
requestId,
});
};
const streamer = new TextStreamer(tokenizer, {
skip_prompt: true,
skip_special_tokens: false,
token_callback_function: tokenCallbackFunction,
callback_function: callbackFunction,
});
const cacheKey = MODEL.modelId + JSON.stringify(messages.slice(0, -1));
const useCache = cacheKey === cache.key;
const { sequences, past_key_values } = (await model.generate({
...input,
max_new_tokens: 1024,
past_key_values: useCache ? cache.pastKeyValues : null,
return_dict_in_generate: true,
temperature: data.temperature,
stopping_criteria: stoppingCriteria,
streamer,
})) as { sequences: Tensor; past_key_values: any };
const ended = performance.now();
const lengthOfInput = input.input_ids.dims[1];
const response = removeEosToken(
tokenizer.batch_decode(
/**
* First argument (null): Don't slice dimension 0 (the batch dimension) - keep all batches
* Second argument ([lengthOfInput, Number.MAX_SAFE_INTEGER]): For dimension 1 (the sequence/token dimension), slice from index lengthOfInput to the end
*/
sequences.slice(null, [lengthOfInput, Number.MAX_SAFE_INTEGER]),
{
skip_special_tokens: false,
}
)[0]
);
const template = tokenizer.batch_decode(sequences, {
skip_special_tokens: false,
})[0];
cache = {
pastKeyValues: past_key_values,
key:
MODEL.modelId +
JSON.stringify([
...messages,
{
role: "assistant",
content: response,
},
]),
};
postMessage({
type: ResponseType.GENERATE_TEXT_DONE,
response,
metadata: {
inputDurationMs: firstTokenTime - started,
outputTokens: numTokens,
outputDurationMs: ended - firstTokenTime,
outputTps: tps,
doneMs: ended - started,
modelKey: MODEL.modelId,
model: MODEL.title,
template,
useKvCache: useCache,
temperature: data.temperature,
},
interrupted: stoppingCriteria.interrupted,
requestId,
});
}
};
|