Spaces:
Runtime error
Runtime error
feat: a python script with functions used for processing and analysis of requests and interventions data
Browse files- src/data_analysis.py +242 -0
src/data_analysis.py
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This file contains some functions used to analyze the data from requests and interventions.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import re
|
| 6 |
+
import datetime as dt
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import plotly.express as px
|
| 9 |
+
import plotly.graph_objects as go
|
| 10 |
+
from torch import Tensor
|
| 11 |
+
from transformers import AutoModel, AutoTokenizer
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
SUPPLIES_TAGS = {
|
| 16 |
+
'alimentation': 'ALIMENTATION ET EAU / FOOD AND WATER / الغذاء والماء',
|
| 17 |
+
'eau': 'ALIMENTATION ET EAU / FOOD AND WATER / الغذاء والماء',
|
| 18 |
+
'food': 'ALIMENTATION ET EAU / FOOD AND WATER / الغذاء والماء',
|
| 19 |
+
'water': 'ALIMENTATION ET EAU / FOOD AND WATER / الغذاء والماء',
|
| 20 |
+
'nourriture': 'ALIMENTATION ET EAU / FOOD AND WATER / الغذاء والماء',
|
| 21 |
+
'medical': 'ASSISTANCE MÉDICALE / MEDICAL ASSISTANCE / المساعدة الطبية',
|
| 22 |
+
'médical': 'ASSISTANCE MÉDICALE / MEDICAL ASSISTANCE / المساعدة الطبية',
|
| 23 |
+
'doctor': 'ASSISTANCE MÉDICALE / MEDICAL ASSISTANCE / المساعدة الطبية',
|
| 24 |
+
'vêtements': 'VÊTEMENTS / CLOTHES / الملابس',
|
| 25 |
+
'clothes': 'VÊTEMENTS / CLOTHES / الملابس',
|
| 26 |
+
'secours': 'SECOURS / RESCUE / الإنقاذ',
|
| 27 |
+
'rescue': 'SECOURS / RESCUE / الإنقاذ',
|
| 28 |
+
'refuge': 'REFUGE / SHELTER / المأوى',
|
| 29 |
+
'shelter': 'REFUGE / SHELTER / المأوى',
|
| 30 |
+
'couvertures': 'COUVERTURES / COVERS / البطانيات',
|
| 31 |
+
'covers': 'COUVERTURES / COVERS / البطانيات',
|
| 32 |
+
'pharmaceuticals': 'PHARMACEUTICALS / MEDICAMENTS / الأدوية',
|
| 33 |
+
'medicaments': 'PHARMACEUTICALS / MEDICAMENTS / الأدوية',
|
| 34 |
+
'pharmacy': 'PHARMACEUTICALS / MEDICAMENTS / الأدوية',
|
| 35 |
+
'medicine': 'PHARMACEUTICALS / MEDICAMENTS / الأدوية',
|
| 36 |
+
'blankets': 'COUVERTURES / COVERS / البطانيات',
|
| 37 |
+
'tents': 'REFUGE / SHELTER / المأوى',
|
| 38 |
+
'couches': 'PHARMACEUTICALS / MEDICAMENTS / الأدوية'
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
SUPPLIES_NEEDS_CATEGORIES = ['ALIMENTATION ET EAU / FOOD AND WATER / الغذاء والماء',
|
| 42 |
+
'ASSISTANCE MÉDICALE / MEDICAL ASSISTANCE / المساعدة الطبية',
|
| 43 |
+
'VÊTEMENTS / CLOTHES / الملابس',
|
| 44 |
+
'SECOURS / RESCUE / الإنقاذ',
|
| 45 |
+
'REFUGE / SHELTER / المأوى',
|
| 46 |
+
'COUVERTURES / COVERS / البطانيات',
|
| 47 |
+
# 'KITCHEN TOOLS / USTENSILES DE CUISINE / أدوات المطبخ',
|
| 48 |
+
'PHARMACEUTICALS / MEDICAMENTS / الأدوية',
|
| 49 |
+
'OTHER']
|
| 50 |
+
|
| 51 |
+
TRANSLATION_DICT = {
|
| 52 |
+
'أغطية': 'covers',
|
| 53 |
+
'أسرة': 'beds',
|
| 54 |
+
'وسادات': 'pillows',
|
| 55 |
+
'مصابح': 'lamps',
|
| 56 |
+
'خيام': 'tents',
|
| 57 |
+
'ألعاب أطفال': 'toys',
|
| 58 |
+
'قليل من المواد الغذائية': 'food',
|
| 59 |
+
'افرشة': 'covers',
|
| 60 |
+
'جلباب': 'clothes',
|
| 61 |
+
'ملابس': 'clothes',
|
| 62 |
+
'لديهم كل شيء': 'unknown'
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def clean_text(text):
|
| 67 |
+
"""
|
| 68 |
+
remove special characters from text
|
| 69 |
+
"""
|
| 70 |
+
pattern = re.compile(r'[\u200e\xa0()\u200f]')
|
| 71 |
+
cleaned_text = pattern.sub('', text)
|
| 72 |
+
return cleaned_text
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def contains_arabic(text):
|
| 76 |
+
"""
|
| 77 |
+
check if the text contains arabic characters
|
| 78 |
+
"""
|
| 79 |
+
arabic_pattern = re.compile(r'[\u0600-\u06FF]+')
|
| 80 |
+
if type(text)!=str:
|
| 81 |
+
return False
|
| 82 |
+
return arabic_pattern.search(text) is not None
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def arabic_to_latin_punctuation(text):
|
| 86 |
+
"""
|
| 87 |
+
replace arabic punctuation with latin punctuation
|
| 88 |
+
"""
|
| 89 |
+
punctuation_mapping = {
|
| 90 |
+
'،': ',',
|
| 91 |
+
'؛': ';',
|
| 92 |
+
'ـ': '_',
|
| 93 |
+
'؟': '?',
|
| 94 |
+
'٪': '%',
|
| 95 |
+
'٫': '.',
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
for arabic_punct, latin_punct in punctuation_mapping.items():
|
| 99 |
+
text = text.replace(arabic_punct, latin_punct)
|
| 100 |
+
|
| 101 |
+
return text
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def plot_timeline(df: pd.DataFrame, today: dt.datetime, date_col: str):
|
| 105 |
+
"""Plot the timeline of requests and interventions.
|
| 106 |
+
"""
|
| 107 |
+
df_past = df[df[date_col]<=today.date()]
|
| 108 |
+
df_future = df[df[date_col]>today.date()]
|
| 109 |
+
|
| 110 |
+
count_past = (df_past
|
| 111 |
+
.groupby(date_col)
|
| 112 |
+
.size()
|
| 113 |
+
.rename('count')
|
| 114 |
+
.reset_index())
|
| 115 |
+
past_date_range = pd.date_range(start=min(count_past[date_col]),
|
| 116 |
+
end=today.date(),
|
| 117 |
+
freq='D')
|
| 118 |
+
count_past = (count_past
|
| 119 |
+
.set_index(date_col)
|
| 120 |
+
.reindex(past_date_range, fill_value=0)
|
| 121 |
+
.reset_index())
|
| 122 |
+
|
| 123 |
+
if len(df_future)>0:
|
| 124 |
+
count_future = df_future.groupby(date_col).size().rename('count').reset_index()
|
| 125 |
+
future_date_range = pd.date_range(start=today.date()+dt.timedelta(days=1),
|
| 126 |
+
end=max(count_future[date_col]),
|
| 127 |
+
freq='D')
|
| 128 |
+
count_future = (count_future
|
| 129 |
+
.set_index(date_col)
|
| 130 |
+
.reindex(future_date_range, fill_value=0)
|
| 131 |
+
.reset_index())
|
| 132 |
+
else:
|
| 133 |
+
count_future = pd.DataFrame()
|
| 134 |
+
|
| 135 |
+
bridge_date = today.date()
|
| 136 |
+
bridge_data = pd.DataFrame(
|
| 137 |
+
{'index': bridge_date, 'form_date':count_past.iloc[-1]['count']}, index=[0])
|
| 138 |
+
count_future = pd.concat([bridge_data, count_future], ignore_index=True)
|
| 139 |
+
|
| 140 |
+
# Plot
|
| 141 |
+
fig = go.Figure()
|
| 142 |
+
# past
|
| 143 |
+
fig.add_trace(go.Scatter(x=count_past['index'],
|
| 144 |
+
y=count_past['count'],
|
| 145 |
+
mode='lines',
|
| 146 |
+
name='Past Interventions',
|
| 147 |
+
line=dict(color='blue')))
|
| 148 |
+
# future
|
| 149 |
+
fig.add_trace(go.Scatter(x=count_future['index'],
|
| 150 |
+
y=count_future['count'],
|
| 151 |
+
mode='lines',
|
| 152 |
+
name='Future Interventions',
|
| 153 |
+
line=dict(color='orange')))
|
| 154 |
+
|
| 155 |
+
fig.add_vline(x=today.date(), line_dash="dash", line_color="black")
|
| 156 |
+
|
| 157 |
+
fig.update_layout(yaxis_title="#", xaxis_title='date')
|
| 158 |
+
return fig
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def classify_supplies_rule_based(text: pd.DataFrame, keep_raw: bool = False):
|
| 162 |
+
""" Classifies text into supplies categories from SUPPLIES_TAGS
|
| 163 |
+
using a rule-based approach."""
|
| 164 |
+
classes = []
|
| 165 |
+
lowercase_text = text.lower() # case-insensitive matching
|
| 166 |
+
|
| 167 |
+
for keyword, category in SUPPLIES_TAGS.items():
|
| 168 |
+
if keyword in lowercase_text:
|
| 169 |
+
classes.append(category)
|
| 170 |
+
|
| 171 |
+
if keep_raw:
|
| 172 |
+
classes.append(lowercase_text)
|
| 173 |
+
|
| 174 |
+
elif not classes:
|
| 175 |
+
classes.append('OTHER')
|
| 176 |
+
|
| 177 |
+
return list(set(classes))
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def classify_multilingual_field_e5(df: pd.DataFrame,
|
| 181 |
+
field_to_tag: str = 'supplies',
|
| 182 |
+
categories: list = SUPPLIES_NEEDS_CATEGORIES):
|
| 183 |
+
"""
|
| 184 |
+
Tag supplies/requests into categories using multilingual-e5-large model.
|
| 185 |
+
Returns a dataframe with a new column containing the list of predicted categories.
|
| 186 |
+
Requires CUDA
|
| 187 |
+
"""
|
| 188 |
+
def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
| 189 |
+
last_hidden = last_hidden_states.masked_fill(
|
| 190 |
+
~attention_mask[..., None].bool(), 0.0)
|
| 191 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
| 192 |
+
|
| 193 |
+
tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large')
|
| 194 |
+
model = AutoModel.from_pretrained('intfloat/multilingual-e5-large')
|
| 195 |
+
model.cuda()
|
| 196 |
+
|
| 197 |
+
# classify ar supplies
|
| 198 |
+
processed_df = df.copy()
|
| 199 |
+
values_to_classify = processed_df[field_to_tag]
|
| 200 |
+
|
| 201 |
+
mapped_inputs = dict()
|
| 202 |
+
|
| 203 |
+
for text in values_to_classify:
|
| 204 |
+
gt = [f"{s}" for s in categories]
|
| 205 |
+
qr = [f"{v}" for v in re.split("\.|,| و", text)]
|
| 206 |
+
input_texts = qr + gt
|
| 207 |
+
|
| 208 |
+
# Tokenize the input texts
|
| 209 |
+
batch_dict = tokenizer(
|
| 210 |
+
input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
| 211 |
+
batch_dict = {k: v.cuda() for k, v in batch_dict.items()}
|
| 212 |
+
|
| 213 |
+
outputs = model(**batch_dict)
|
| 214 |
+
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
| 215 |
+
|
| 216 |
+
# normalize embeddings
|
| 217 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 218 |
+
scores = (embeddings[:len(qr)] @ embeddings[len(qr):].T) * 100
|
| 219 |
+
|
| 220 |
+
mapped_inputs[text] = list(
|
| 221 |
+
set([categories[int(scores[i,:].argmax())] for i in range(len(qr))]))
|
| 222 |
+
|
| 223 |
+
processed_df.loc[values_to_classify.index, f'{field_to_tag}_category'] = list(
|
| 224 |
+
mapped_inputs.values())
|
| 225 |
+
|
| 226 |
+
return processed_df
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def plot_categories_share(raw_df: pd.DataFrame,
|
| 230 |
+
today: dt.datetime,
|
| 231 |
+
field: str = 'supplies'):
|
| 232 |
+
"""
|
| 233 |
+
Plot the share of each category of requests/supplies.
|
| 234 |
+
"""
|
| 235 |
+
df = raw_df[[field, f'{field}_category']].explode(f'{field}_category')
|
| 236 |
+
pie_data = df.groupby(f'{field}_category', as_index=False).size().rename('n')
|
| 237 |
+
fig = px.pie(pie_data,
|
| 238 |
+
names=f'{field}_category',
|
| 239 |
+
values='n',
|
| 240 |
+
title=f'# per {field} category up till {today.date()}',
|
| 241 |
+
labels={f'{field}_category': f'{field}', 'n': '%'})
|
| 242 |
+
return fig
|