bert-qa-demo / app.py
omarbayoumi2's picture
Create app.py
55cdbf4 verified
from transformers import pipeline
import gradio as gr
# 1) Load your fine-tuned QA model from the Hub
MODEL_ID = "omarbayoumi2/bert-base-qa-squad-colab"
qa = pipeline(
"question-answering",
model=MODEL_ID,
tokenizer=MODEL_ID,
)
# 2) Inference function
def answer(question, context):
if not question or not context:
return "Please provide both a question and a context."
result = qa(question=question, context=context)
# result is a dict: {'score': ..., 'start': ..., 'end': ..., 'answer': ...}
return result["answer"]
# 3) Build Gradio interface
iface = gr.Interface(
fn=answer,
inputs=[
gr.Textbox(label="Question", placeholder="Ask a question about the context..."),
gr.Textbox(label="Context", lines=8, placeholder="Paste the context paragraph here..."),
],
outputs=gr.Textbox(label="Answer"),
title="BERT-base SQuAD QA Demo",
description=(
"Fine-tuned `bert-base-uncased` on SQuAD v1.1.\n"
"Model: omarbayoumi2/bert-base-qa-squad-colab"
),
)
if __name__ == "__main__":
iface.launch()