from transformers import pipeline import gradio as gr # 1) Load your fine-tuned QA model from the Hub MODEL_ID = "omarbayoumi2/bert-base-qa-squad-colab" qa = pipeline( "question-answering", model=MODEL_ID, tokenizer=MODEL_ID, ) # 2) Inference function def answer(question, context): if not question or not context: return "Please provide both a question and a context." result = qa(question=question, context=context) # result is a dict: {'score': ..., 'start': ..., 'end': ..., 'answer': ...} return result["answer"] # 3) Build Gradio interface iface = gr.Interface( fn=answer, inputs=[ gr.Textbox(label="Question", placeholder="Ask a question about the context..."), gr.Textbox(label="Context", lines=8, placeholder="Paste the context paragraph here..."), ], outputs=gr.Textbox(label="Answer"), title="BERT-base SQuAD QA Demo", description=( "Fine-tuned `bert-base-uncased` on SQuAD v1.1.\n" "Model: omarbayoumi2/bert-base-qa-squad-colab" ), ) if __name__ == "__main__": iface.launch()