File size: 22,131 Bytes
91c2eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2063994
91c2eb9
 
5ee5de2
91c2eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed463e7
 
91c2eb9
ed463e7
 
 
91c2eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93d4e58
 
91c2eb9
 
 
 
 
 
 
 
93d4e58
91c2eb9
 
 
 
93d4e58
91c2eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93d4e58
91c2eb9
93d4e58
91c2eb9
 
 
93d4e58
91c2eb9
93d4e58
91c2eb9
93d4e58
91c2eb9
93d4e58
91c2eb9
93d4e58
91c2eb9
93d4e58
91c2eb9
93d4e58
 
 
91c2eb9
 
 
93d4e58
91c2eb9
 
 
 
 
93d4e58
91c2eb9
 
 
 
 
 
93d4e58
91c2eb9
 
 
 
93d4e58
91c2eb9
 
 
 
 
 
 
 
93d4e58
 
91c2eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f705f4f
91c2eb9
 
 
 
 
 
 
 
 
123d301
91c2eb9
 
 
 
 
 
 
99095ba
91c2eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99095ba
 
 
 
 
123d301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91c2eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed463e7
91c2eb9
 
 
 
ed463e7
 
91c2eb9
 
 
 
 
99095ba
91c2eb9
b55adfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91c2eb9
 
 
 
 
ed463e7
 
91c2eb9
 
 
 
 
 
ed463e7
 
91c2eb9
93d4e58
ed463e7
 
91c2eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed463e7
 
 
 
 
 
 
 
 
 
 
 
 
91c2eb9
 
 
 
 
 
 
 
 
 
 
 
 
123d301
91c2eb9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import gradio as gr
import torch
from transformers import (
    AutoTokenizer, 
    AutoModelForSeq2SeqLM,
)
from sentence_transformers import SentenceTransformer, util
from typing import List, Tuple, Dict
import re
import difflib

# Initialize similarity model
similarity_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

# Model configurations
PARAPHRASE_MODELS = {
    "T5-Base": "Vamsi/T5_Paraphrase_Paws",
    # "PEGASUS-Paraphrase": "tuner007/pegasus_paraphrase",
    "Parrot-Paraphraser": "prithivida/parrot_paraphraser_on_T5",
    "BART-Paraphrase": "eugenesiow/bart-paraphrase",
    "ChatGPT-Style-T5": "humarin/chatgpt_paraphraser_on_T5_base",
}

EXPANSION_MODELS = {
    "Flan-T5-Base": "google/flan-t5-base",
    "Flan-T5-Large": "google/flan-t5-large",
}

# Cache for loaded models
model_cache = {}

def load_model(model_name: str, model_path: str):
    """Load model and tokenizer with caching"""
    if model_name in model_cache:
        return model_cache[model_name]
    
    print(f"Loading {model_name}...")
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
    
    # Move to GPU if available
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = model.to(device)
    
    model_cache[model_name] = (model, tokenizer, device)
    return model, tokenizer, device

def chunk_text(text: str, max_sentences: int = 4) -> List[str]:
    """Split text into chunks based on number of sentences"""
    sentences = re.split(r'(?<=[.!?]) +', text.strip())
    chunks = [' '.join(sentences[i:i+max_sentences]) for i in range(0, len(sentences), max_sentences)]
    return [chunk for chunk in chunks if chunk.strip()]

def estimate_tokens(text: str) -> int:
    """Estimate number of tokens in text (approximate: 1 token β‰ˆ 0.75 words)"""
    word_count = len(text.split())
    return int(word_count / 0.75)

def calculate_max_length(input_text: str, mode: str, base_max_length: int) -> int:
    """Calculate appropriate max_length based on input tokens"""
    input_tokens = estimate_tokens(input_text)
    
    if mode == "Paraphrase":
        # For paraphrasing: output should be 1.2-1.5x input tokens
        calculated_max = int(input_tokens * 1.5) + 50
    else:
        # For expansion: output should be 2-3x input tokens
        calculated_max = int(input_tokens * 3) + 100
    
    # Use the larger of calculated or user-specified max_length
    final_max_length = max(calculated_max, base_max_length)
    
    # Cap at reasonable maximum to avoid memory issues
    return min(final_max_length, 1024)

def calculate_similarity(text1: str, text2: str) -> float:
    """Calculate cosine similarity between two texts"""
    if not text1.strip() or not text2.strip():
        return 0.0 
    embeddings = similarity_model.encode([text1, text2], convert_to_tensor=True)
    similarity = util.cos_sim(embeddings[0], embeddings[1]).item()
    similarity = round(similarity*100,2)
    return similarity

def highlight_differences(original: str, generated: str) -> Tuple[str, str, Dict]:
    """
    Create highlighted HTML versions of both texts showing differences
    Returns: (highlighted_original, highlighted_generated, statistics)
    """
    # Split into words for comparison
    original_words = original.split()
    generated_words = generated.split()
    
    # Use difflib to find differences
    diff = difflib.SequenceMatcher(None, original_words, generated_words)
    
    highlighted_original = []
    highlighted_generated = []
    
    changes_count = 0
    additions_count = 0
    deletions_count = 0
    unchanged_count = 0
    word_substitutions = []
    
    for tag, i1, i2, j1, j2 in diff.get_opcodes():
        original_chunk = ' '.join(original_words[i1:i2])
        generated_chunk = ' '.join(generated_words[j1:j2])
        
        if tag == 'equal':
            # Unchanged text
            highlighted_original.append(original_chunk)
            highlighted_generated.append(generated_chunk)
            unchanged_count += (i2 - i1)
            
        elif tag == 'replace':
            # Changed text
            highlighted_original.append(f'<span style="color: #ffcccc; padding: 2px 4px; border-radius: 3px; text-decoration: line-through;">{original_chunk}</span>')
            highlighted_generated.append(f'<span style="color: #ccffcc; padding: 2px 4px; border-radius: 3px; font-weight: 500;">{generated_chunk}</span>')
            changes_count += max(i2 - i1, j2 - j1)
            
            # Track word substitutions (limit to single word changes for clarity)
            if i2 - i1 == 1 and j2 - j1 == 1:
                word_substitutions.append((original_chunk, generated_chunk))
            
        elif tag == 'delete':
            # Text removed in generated
            highlighted_original.append(f'<span style="color: #ffcccc; padding: 2px 4px; border-radius: 3px; text-decoration: line-through;">{original_chunk}</span>')
            deletions_count += (i2 - i1)
            
        elif tag == 'insert':
            # Text added in generated
            highlighted_generated.append(f'<span style="color: #ccffcc; padding: 2px 4px; border-radius: 3px; font-weight: 500;">{generated_chunk}</span>')
            additions_count += (j2 - j1)
    
    # Join with spaces
    final_original = ' '.join(highlighted_original)
    final_generated = ' '.join(highlighted_generated)
    
    # Calculate statistics
    total_original_words = len(original_words)
    total_generated_words = len(generated_words)
    
    percentage_changed = (changes_count + deletions_count + additions_count) / max(total_original_words, 1) * 100
    percentage_unchanged = (unchanged_count / max(total_original_words, 1)) * 100
    
    statistics = {
        'total_original': total_original_words,
        'total_generated': total_generated_words,
        'unchanged': unchanged_count,
        'changed': changes_count,
        'added': additions_count,
        'deleted': deletions_count,
        'percentage_changed': percentage_changed,
        'percentage_unchanged': percentage_unchanged,
        'substitutions': word_substitutions[:10]  # Limit to first 10
    }
    
    return final_original, final_generated, statistics

def format_statistics(stats: Dict) -> str:
    """Format statistics into a readable HTML string with dark theme"""
    html = f"""
    <div style="padding: 15px; background: #000000; border-radius: 10px; color: white; margin: 10px 0;">
        <h3 style="margin-top: 0; color: white;">πŸ“Š Change Analysis</h3>
        
        <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(150px, 1fr)); gap: 10px; margin: 15px 0;">
            <div style="background: rgba(255,255,255,0.05); padding: 10px; border-radius: 8px; text-align: center;">
                <div style="font-size: 24px; font-weight: bold;">{stats['total_original']}</div>
                <div style="font-size: 12px; opacity: 0.8;">Original Words</div>
            </div>
            <div style="background: rgba(255,255,255,0.05); padding: 10px; border-radius: 8px; text-align: center;">
                <div style="font-size: 24px; font-weight: bold;">{stats['total_generated']}</div>
                <div style="font-size: 12px; opacity: 0.8;">Generated Words</div>
            </div>
            <div style="background: rgba(255,255,255,0.05); padding: 10px; border-radius: 8px; text-align: center;">
                <div style="font-size: 24px; font-weight: bold; color: #90EE90;">{stats['unchanged']}</div>
                <div style="font-size: 12px; opacity: 0.8;">Unchanged</div>
            </div>
            <div style="background: rgba(255,255,255,0.05); padding: 10px; border-radius: 8px; text-align: center;">
                <div style="font-size: 24px; font-weight: bold; color: #FF4C4C;">{stats['changed']}</div>
                <div style="font-size: 12px; opacity: 0.8;">Changed</div>
            </div>
        </div>
        
        <div style="margin: 15px 0; padding: 10px; background: rgba(255,255,255,0.05); border-radius: 8px;">
            <div style="margin-bottom: 8px;">
                <strong>Modification Rate:</strong> {stats['percentage_changed']:.1f}% modified, {stats['percentage_unchanged']:.1f}% preserved
            </div>
            <div style="margin-bottom: 8px;">
                <span style="color: #90EE90;">✚ Added: {stats['added']} words</span> | 
                <span style="color: #FF4C4C;">βœ– Removed: {stats['deleted']} words</span>
            </div>
        </div>
    """
    
    if stats['substitutions']:
        html += """
        <div style="margin-top: 15px; padding: 10px; background: rgba(255,255,255,0.05); border-radius: 8px;">
            <strong>πŸ”„ Sample Word Substitutions:</strong>
            <div style="margin-top: 8px; font-size: 13px; line-height: 1.6;">
        """
        for orig, new in stats['substitutions']:
            html += f'<div style="margin: 4px 0;"><span style="color: #FF4C4C;">{orig}</span> β†’ <span style="color: #90EE90;">{new}</span></div>'
        html += """
            </div>
        </div>
        """
    
    html += """
        <div style="margin-top: 15px; padding: 8px; background: rgba(255,255,255,0.05); border-radius: 6px; font-size: 12px;">
            <strong>Legend:</strong> 
            <span style="background-color: #FF4C4C; padding: 2px 6px; border-radius: 3px; margin: 0 4px;">Removed/Changed</span>
            <span style="background-color: #90EE90; padding: 2px 6px; border-radius: 3px; margin: 0 4px;">Added/New</span>
        </div>
    </div>
    """
    
    return html

def paraphrase_text(
    text: str,
    model_name: str,
    temperature: float,
    top_p: float,
    max_length: int,
    num_beams: int,
    max_sentences: int,
    target_words: int = None,
    mode: str = "Paraphrase"
) -> Tuple[str, float]:
    """Paraphrase or expand text based on mode"""
    
    if not text.strip():
        return "Please enter some text to process.", 0.0
    
    # Select appropriate model based on mode
    if mode == "Paraphrase":
        models_dict = PARAPHRASE_MODELS
        if model_name not in models_dict:
            model_name = list(models_dict.keys())[0]
        model_path = models_dict[model_name]
        prefix = "paraphrase: " if "T5" in model_name else ""
    else:  # Expand mode
        models_dict = EXPANSION_MODELS
        if model_name not in models_dict:
            model_name = list(models_dict.keys())[0]
        model_path = models_dict[model_name]
        target_words = target_words or 300
        prefix = f"Expand the following text to approximately {target_words} words, adding more details and context: "
    
    # Load model
    model, tokenizer, device = load_model(model_name, model_path)
    
    # Chunk text based on sentences
    chunks = chunk_text(text, max_sentences=max_sentences)
    
    processed_chunks = []
    
    print(f"\n{'='*60}")
    print(f"Processing {len(chunks)} chunk(s) with {max_sentences} sentences per chunk")
    print(f"{'='*60}")
    
    for i, chunk in enumerate(chunks):
        # Calculate dynamic max_length for this chunk
        chunk_max_length = calculate_max_length(chunk, mode, max_length)
        input_tokens = estimate_tokens(chunk)
        
        # Prepare input
        input_text = prefix + chunk + " </s>" if mode == "Paraphrase" else prefix + chunk
        inputs = tokenizer.encode(
            input_text, 
            return_tensors="pt", 
            max_length=512, 
            truncation=True
        )
        inputs = inputs.to(device)
        
        # Calculate min_length to ensure output isn't too short
        if mode == "Paraphrase":
            min_length_calc = int(input_tokens * 0.8)
        else:
            min_length_calc = int(input_tokens * 1.5)
        
        # Generate
        with torch.no_grad():
            outputs = model.generate(
                inputs,
                max_length=chunk_max_length,
                min_length=min(min_length_calc, chunk_max_length - 10),
                num_beams=num_beams,
                temperature=temperature if temperature > 0 else 1.0,
                top_p=top_p,
                top_k=120 if mode == "Paraphrase" else 50,
                do_sample=temperature > 0,
                early_stopping=True,
                no_repeat_ngram_size=3 if mode == "Expand" else 2,
                length_penalty=1.0 if mode == "Paraphrase" else 1.5,
                repetition_penalty=1.2,
            )
        
        # Decode output
        processed_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        processed_chunks.append(processed_text.strip())
        
        output_tokens = estimate_tokens(processed_text)
        print(f"Chunk {i+1}/{len(chunks)}:")
        print(f"  Input: {len(chunk.split())} words (~{input_tokens} tokens)")
        print(f"  Output: {len(processed_text.split())} words (~{output_tokens} tokens)")
        print(f"  Max length used: {chunk_max_length}")
        print(f"-" * 60)
    
    # Combine chunks with double newline
    final_text = "\n\n".join(processed_chunks)
    
    # Calculate similarity
    similarity_score = calculate_similarity(text, final_text)
    
    print(f"{'='*60}")
    print(f"Total: {len(text.split())} β†’ {len(final_text.split())} words")
    print(f"Similarity: {similarity_score:.4f}")
    print(f"{'='*60}\n")
    
    return final_text, similarity_score

def update_model_choices(mode: str):
    """Update model dropdown based on selected mode"""
    if mode == "Paraphrase":
        choices = list(PARAPHRASE_MODELS.keys())
    else:
        choices = list(EXPANSION_MODELS.keys())
    return gr.Dropdown(choices=choices, value=choices[0])

def update_parameters_visibility(mode: str):
    """Show/hide target words parameter based on mode"""
    if mode == "Expand":
        return gr.Number(visible=True)
    else:
        return gr.Number(visible=False)

def process_text(
    input_text: str,
    mode: str,
    model_name: str,
    temperature: float,
    top_p: float,
    max_length: int,
    num_beams: int,
    max_sentences: int,
    target_words: int
):
    """Main processing function"""
    try:
        output_text, similarity = paraphrase_text(
            input_text,
            model_name,
            temperature,
            top_p,
            max_length,
            num_beams,
            max_sentences,
            target_words,
            mode
        )
        
        word_count_original = len(input_text.split())
        word_count_output = len(output_text.split())
        
        # Generate highlighted comparison
        highlighted_original, highlighted_generated, statistics = highlight_differences(
            input_text, 
            output_text
        )
        
        # Format statistics
        stats_html = format_statistics(statistics)
        
        # Basic stats line
        basic_stats = f"**Original:** {word_count_original} words | **Generated:** {word_count_output} words"
        
        return output_text, basic_stats, similarity, highlighted_original, highlighted_generated, stats_html
    except Exception as e:
        import traceback
        error_msg = f"Error: {str(e)}\n\n{traceback.format_exc()}"
        print(error_msg)
        return error_msg, "Error occurred", 0.0, "", "", ""

# Create Gradio interface

with gr.Blocks(title="Text Paraphraser & Expander", theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # πŸ“ Text Paraphraser & Expander
        Transform your text with AI-powered paraphrasing and expansion capabilities.
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            mode = gr.Radio(
                choices=["Paraphrase", "Expand"],
                value="Paraphrase",
                label="Mode",
                info="Choose to paraphrase or expand your text"
            )
            
            model_dropdown = gr.Dropdown(
                choices=list(PARAPHRASE_MODELS.keys()),
                value=list(PARAPHRASE_MODELS.keys())[0],
                label="Model Selection",
                info="Choose the model for processing"
            )
            
            with gr.Row():
                gr.Markdown("## βš™οΈ Configuration")
    
            
            with gr.Accordion("Advanced Parameters", open=False):
                temperature = gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature",
                    info="Higher = more creative, Lower = more focused"
                )
                
                top_p = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.9,
                    step=0.05,
                    label="Top-p (Nucleus Sampling)",
                    info="Probability threshold for token selection"
                )
                
                max_length = gr.Slider(
                    minimum=128,
                    maximum=1024,
                    value=512,
                    step=32,
                    label="Max Length (tokens)",
                    info="Maximum length of generated text per chunk"
                )
                
                num_beams = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=4,
                    step=1,
                    label="Number of Beams",
                    info="Higher = better quality but slower"
                )
                
                max_sentences = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=4,
                    step=1,
                    label="Sentences per Chunk",
                    info="Number of sentences to process together"
                )
                
                target_words = gr.Number(
                    value=300,
                    label="Target Word Count (Expand mode)",
                    info="Approximate number of words for expansion",
                    visible=False
                )
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“₯ Input Text")
            input_text = gr.Textbox(
                lines=10,
                placeholder="Enter your text here...",
                label="Original Text",
                show_copy_button=True
            )
        
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“€ Generated Text")
            output_text = gr.Textbox(
                lines=10,
                label="Processed Text",
                show_copy_button=True
            )
    
    with gr.Row():
        process_btn = gr.Button("πŸš€ Generate", variant="primary", size="lg")
        clear_btn = gr.Button("πŸ—‘οΈ Clear",size="lg")
    
    stats_display = gr.Markdown()
    
    similarity_display = gr.Number(
        label="Content Similarity (%)",
        precision=2,
        interactive=False
    )
    
    # Highlighted comparison section
    gr.Markdown("---")
    gr.Markdown("## 🧩 Visual Comparison - Original vs Paraphrased Text")
    
    gr.HTML("""
        <style>
        #highlighted_original > div {
            overflow-y: auto;  
            max-height: 400px;   
        }
        #highlighted_original > div:empty {
            overflow: hidden; 
        }
        #change_stats > div:empty {
            overflow: hidden;
        }
        </style>
        """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“„ Original Text (with changes highlighted)")
            highlighted_original = gr.HTML(
                label="Original with Changes",
                show_label=False,
                elem_id="highlighted_original"
            )
        
        with gr.Column(scale=1):
            gr.Markdown("### ✨ Generated Text (with changes highlighted)")
            highlighted_generated = gr.HTML(
                label="Generated with Changes",
                show_label=False,
                elem_id="highlighted_original"
            )

    change_stats = gr.HTML(label="Change Statistics",elem_id="change_stats")
    
    
    # Event handlers
    mode.change(
        fn=update_model_choices,
        inputs=[mode],
        outputs=[model_dropdown]
    )
    
    mode.change(
        fn=update_parameters_visibility,
        inputs=[mode],
        outputs=[target_words]
    )
    
    process_btn.click(
        fn=process_text,
        inputs=[
            input_text,
            mode,
            model_dropdown,
            temperature,
            top_p,
            max_length,
            num_beams,
            max_sentences,
            target_words
        ],
        outputs=[
            output_text, 
            stats_display, 
            similarity_display,
            highlighted_original,
            highlighted_generated,
            change_stats
        ]
    )
    
    clear_btn.click(
        fn=lambda: ("", "", 0.0, "", "", ""),
        inputs=[],
        outputs=[
            input_text,
            output_text,
            similarity_display,
            highlighted_original,
            highlighted_generated,
            change_stats
        ]
    )
    
    gr.Markdown(
        """
        ---
        ### πŸ’‘ Tips:
        - **Paraphrase Mode**: Rewrites text while preserving meaning
        - **Expand Mode**: Adds details and elaboration to make text longer
        - **Sentences per Chunk**: Controls how many sentences are processed together (4 recommended)
        - Adjust temperature for creativity (0.7-1.0 for paraphrase, 1.0-1.5 for expansion)
        - Higher beam count = better quality but slower processing
        - Max length is automatically calculated based on input, but can be overridden
        - Output chunks are separated by double newlines for readability
        """
    )
    
if __name__ == "__main__":
    demo.launch(share=True)