Spaces:
Runtime error
Runtime error
| import keras | |
| from keras import layers | |
| from keras import models | |
| model = models.Sequential() | |
| model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) | |
| model.add(layers.MaxPooling2D((2, 2))) | |
| model.add(layers.Conv2D(64, (3, 3), activation='relu')) | |
| model.add(layers.MaxPooling2D((2, 2))) | |
| model.add(layers.Conv2D(64, (3, 3), activation='relu')) | |
| #model.summary() | |
| # add fully-connected layers at the end of the model | |
| model.add(layers.Flatten()) | |
| model.add(layers.Dense(64, activation='relu')) | |
| model.add(layers.Dense(10, activation='softmax')) | |
| model.summary() | |
| from keras.datasets import mnist | |
| #from keras.utils import to_categorical | |
| from tensorflow.keras.utils import to_categorical | |
| (train_images, train_labels), (test_images, test_labels) = mnist.load_data() | |
| train_images = train_images.reshape((60000, 28, 28, 1)) | |
| train_images = train_images.astype('float32') / 255 | |
| test_images = test_images.reshape((10000, 28, 28, 1)) | |
| test_images = test_images.astype('float32') / 255 | |
| train_labels = to_categorical(train_labels) | |
| test_labels = to_categorical(test_labels) | |
| # compile and train the model | |
| model.compile(optimizer='rmsprop', | |
| loss='categorical_crossentropy', | |
| metrics=['accuracy']) | |
| model.fit(train_images, train_labels, epochs=5, batch_size=64) | |
| test_loss, test_acc = model.evaluate(test_images, test_labels) |