Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,42 @@
|
|
| 1 |
# app.py
|
| 2 |
-
# FINAL VERSION using
|
| 3 |
|
| 4 |
# 1. Import necessary libraries
|
| 5 |
import gradio as gr
|
| 6 |
-
from transformers import pipeline
|
|
|
|
| 7 |
import torch
|
| 8 |
|
| 9 |
-
# 2. Load the Language Model
|
| 10 |
-
# This
|
| 11 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
generator = pipeline(
|
| 13 |
-
"text-generation",
|
| 14 |
-
model=
|
| 15 |
-
|
| 16 |
-
device_map="auto"
|
| 17 |
)
|
| 18 |
-
print("
|
| 19 |
MODEL_LOADED = True
|
| 20 |
except Exception as e:
|
| 21 |
-
print(f"Error loading model: {e}")
|
| 22 |
generator = None
|
| 23 |
MODEL_LOADED = False
|
| 24 |
|
| 25 |
# 3. Define the core analysis function
|
| 26 |
-
# This function contains the prompt engineering and model inference logic.
|
| 27 |
def analyze_document(document_text, query_text):
|
| 28 |
"""
|
| 29 |
Analyzes the document based on the query using the loaded LLM.
|
|
@@ -79,7 +92,6 @@ def analyze_document(document_text, query_text):
|
|
| 79 |
|
| 80 |
if json_start != -1 and json_end > json_start:
|
| 81 |
cleaned_json_str = generated_text[json_start:json_end]
|
| 82 |
-
# Gradio's JSON component expects a Python dictionary, not a string
|
| 83 |
import json
|
| 84 |
return json.loads(cleaned_json_str)
|
| 85 |
else:
|
|
@@ -90,10 +102,9 @@ def analyze_document(document_text, query_text):
|
|
| 90 |
return {"error": f"An error occurred during analysis: {str(e)}"}
|
| 91 |
|
| 92 |
# 4. Create and launch the Gradio Interface
|
| 93 |
-
# This creates the web UI and API endpoint automatically.
|
| 94 |
with gr.Blocks() as demo:
|
| 95 |
-
gr.Markdown("# Policy Analysis API")
|
| 96 |
-
gr.Markdown("This Gradio app serves the backend for the RAG policy analysis system.")
|
| 97 |
|
| 98 |
with gr.Row():
|
| 99 |
doc_input = gr.Textbox(lines=5, label="Document Text", placeholder="Paste the document text here...")
|
|
@@ -106,9 +117,7 @@ with gr.Blocks() as demo:
|
|
| 106 |
fn=analyze_document,
|
| 107 |
inputs=[doc_input, query_input],
|
| 108 |
outputs=output_json,
|
| 109 |
-
api_name="analyze"
|
| 110 |
)
|
| 111 |
|
| 112 |
-
|
| 113 |
-
# The `share=True` is not needed when running on Spaces.
|
| 114 |
-
demo.launch()
|
|
|
|
| 1 |
# app.py
|
| 2 |
+
# FINAL CPU VERSION using a quantized model for maximum reliability on free hardware.
|
| 3 |
|
| 4 |
# 1. Import necessary libraries
|
| 5 |
import gradio as gr
|
| 6 |
+
from transformers import AutoTokenizer, pipeline
|
| 7 |
+
from optimum.gptq import AutoModelForCausalLM
|
| 8 |
import torch
|
| 9 |
|
| 10 |
+
# 2. Load the Quantized Language Model
|
| 11 |
+
# This model is optimized to use less memory, making it stable on free CPUs.
|
| 12 |
try:
|
| 13 |
+
model_name_or_path = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GPTQ"
|
| 14 |
+
|
| 15 |
+
# Load the tokenizer
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
| 17 |
+
|
| 18 |
+
# Load the quantized model
|
| 19 |
+
model = AutoModelForCausalLM.from_quantized(
|
| 20 |
+
model_name_or_path,
|
| 21 |
+
use_safetensors=True,
|
| 22 |
+
trust_remote_code=False,
|
| 23 |
+
device_map="auto" # Will automatically use CPU
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Create the text generation pipeline
|
| 27 |
generator = pipeline(
|
| 28 |
+
task="text-generation",
|
| 29 |
+
model=model,
|
| 30 |
+
tokenizer=tokenizer
|
|
|
|
| 31 |
)
|
| 32 |
+
print("Quantized model loaded successfully on CPU.")
|
| 33 |
MODEL_LOADED = True
|
| 34 |
except Exception as e:
|
| 35 |
+
print(f"Error loading quantized model: {e}")
|
| 36 |
generator = None
|
| 37 |
MODEL_LOADED = False
|
| 38 |
|
| 39 |
# 3. Define the core analysis function
|
|
|
|
| 40 |
def analyze_document(document_text, query_text):
|
| 41 |
"""
|
| 42 |
Analyzes the document based on the query using the loaded LLM.
|
|
|
|
| 92 |
|
| 93 |
if json_start != -1 and json_end > json_start:
|
| 94 |
cleaned_json_str = generated_text[json_start:json_end]
|
|
|
|
| 95 |
import json
|
| 96 |
return json.loads(cleaned_json_str)
|
| 97 |
else:
|
|
|
|
| 102 |
return {"error": f"An error occurred during analysis: {str(e)}"}
|
| 103 |
|
| 104 |
# 4. Create and launch the Gradio Interface
|
|
|
|
| 105 |
with gr.Blocks() as demo:
|
| 106 |
+
gr.Markdown("# Policy Analysis API (CPU Version)")
|
| 107 |
+
gr.Markdown("This Gradio app serves the backend for the RAG policy analysis system, optimized for CPU.")
|
| 108 |
|
| 109 |
with gr.Row():
|
| 110 |
doc_input = gr.Textbox(lines=5, label="Document Text", placeholder="Paste the document text here...")
|
|
|
|
| 117 |
fn=analyze_document,
|
| 118 |
inputs=[doc_input, query_input],
|
| 119 |
outputs=output_json,
|
| 120 |
+
api_name="analyze"
|
| 121 |
)
|
| 122 |
|
| 123 |
+
demo.launch()
|
|
|
|
|
|