Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,39 +7,35 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
| 7 |
from pydantic import BaseModel
|
| 8 |
from transformers import pipeline
|
| 9 |
import torch
|
| 10 |
-
import uvicorn
|
| 11 |
|
| 12 |
# 2. Initialize the FastAPI application
|
| 13 |
app = FastAPI()
|
| 14 |
|
| 15 |
# 3. Add CORS middleware
|
| 16 |
-
# This allows our frontend (running on a different domain) to communicate with this backend.
|
| 17 |
app.add_middleware(
|
| 18 |
CORSMiddleware,
|
| 19 |
-
allow_origins=["*"],
|
| 20 |
allow_credentials=True,
|
| 21 |
-
allow_methods=["*"],
|
| 22 |
-
allow_headers=["*"],
|
| 23 |
)
|
| 24 |
|
| 25 |
# 4. Load the Language Model
|
| 26 |
-
#
|
| 27 |
-
# The pipeline will be created only once when the application starts.
|
| 28 |
try:
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
torch_dtype=torch.bfloat16 # Use a memory-efficient data type
|
| 35 |
)
|
| 36 |
print("Model loaded successfully.")
|
| 37 |
except Exception as e:
|
| 38 |
print(f"Error loading model: {e}")
|
| 39 |
-
|
| 40 |
|
| 41 |
# 5. Define the data model for the incoming request
|
| 42 |
-
# This ensures the data we receive is in the correct format.
|
| 43 |
class QueryRequest(BaseModel):
|
| 44 |
document_text: str
|
| 45 |
query_text: str
|
|
@@ -47,55 +43,66 @@ class QueryRequest(BaseModel):
|
|
| 47 |
# 6. Define the API endpoint
|
| 48 |
@app.post("/analyze")
|
| 49 |
async def analyze_document(request: QueryRequest):
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
and uses the LLM to generate a structured JSON response.
|
| 53 |
-
"""
|
| 54 |
-
if summarizer is None:
|
| 55 |
-
return {"error": "Model is not available."}
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
try:
|
| 77 |
# Generate the response from the LLM
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
# The model
|
| 83 |
-
# Find the start and end of the JSON object.
|
| 84 |
json_start = generated_text.find('{')
|
| 85 |
json_end = generated_text.rfind('}') + 1
|
| 86 |
|
| 87 |
-
if json_start != -1 and json_end
|
| 88 |
cleaned_json = generated_text[json_start:json_end]
|
| 89 |
-
# The backend should return the JSON string directly, not a Python dict
|
| 90 |
-
# The frontend will parse it.
|
| 91 |
return cleaned_json
|
| 92 |
else:
|
| 93 |
-
# If no JSON is found, return the raw text with an error flag.
|
| 94 |
return {"error": "Failed to generate valid JSON.", "raw_output": generated_text}
|
| 95 |
|
| 96 |
except Exception as e:
|
| 97 |
print(f"Error during analysis: {e}")
|
| 98 |
-
return {"error": f"An error occurred: {str(e)}"}
|
| 99 |
|
| 100 |
# A simple root endpoint to confirm the server is running.
|
| 101 |
@app.get("/")
|
|
|
|
| 7 |
from pydantic import BaseModel
|
| 8 |
from transformers import pipeline
|
| 9 |
import torch
|
| 10 |
+
import uvicorn
|
| 11 |
|
| 12 |
# 2. Initialize the FastAPI application
|
| 13 |
app = FastAPI()
|
| 14 |
|
| 15 |
# 3. Add CORS middleware
|
|
|
|
| 16 |
app.add_middleware(
|
| 17 |
CORSMiddleware,
|
| 18 |
+
allow_origins=["*"],
|
| 19 |
allow_credentials=True,
|
| 20 |
+
allow_methods=["*"],
|
| 21 |
+
allow_headers=["*"],
|
| 22 |
)
|
| 23 |
|
| 24 |
# 4. Load the Language Model
|
| 25 |
+
# **UPDATED:** Using a smaller, more efficient model to ensure it loads on free hardware.
|
|
|
|
| 26 |
try:
|
| 27 |
+
generator = pipeline(
|
| 28 |
+
"text-generation",
|
| 29 |
+
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", # Switched to TinyLlama
|
| 30 |
+
torch_dtype=torch.bfloat16,
|
| 31 |
+
device_map="auto" # Automatically select device (CPU in this case)
|
|
|
|
| 32 |
)
|
| 33 |
print("Model loaded successfully.")
|
| 34 |
except Exception as e:
|
| 35 |
print(f"Error loading model: {e}")
|
| 36 |
+
generator = None
|
| 37 |
|
| 38 |
# 5. Define the data model for the incoming request
|
|
|
|
| 39 |
class QueryRequest(BaseModel):
|
| 40 |
document_text: str
|
| 41 |
query_text: str
|
|
|
|
| 43 |
# 6. Define the API endpoint
|
| 44 |
@app.post("/analyze")
|
| 45 |
async def analyze_document(request: QueryRequest):
|
| 46 |
+
if generator is None:
|
| 47 |
+
return {"error": "Model is not available. It may have failed to load due to resource constraints."}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
# **UPDATED:** Using a chat-based prompt format suitable for TinyLlama.
|
| 50 |
+
# This structure helps the model understand its role and the task better.
|
| 51 |
+
messages = [
|
| 52 |
+
{
|
| 53 |
+
"role": "system",
|
| 54 |
+
"content": """You are an expert AI assistant for a claims processing department. Your task is to analyze an insurance policy document and a user's query to make a decision. Based ONLY on the information in the Policy Document, determine if the request should be approved or rejected. Provide your final answer in a strict JSON format. The JSON object must contain three keys: "decision" (string, "Approved" or "Rejected"), "amount" (number, 0 if not applicable), and "justification" (string, explaining your reasoning and citing the policy). Do not use any information outside of the provided Policy Document."""
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"role": "user",
|
| 58 |
+
"content": f"""
|
| 59 |
+
**Policy Document (Source of Truth):**
|
| 60 |
+
---
|
| 61 |
+
{request.document_text}
|
| 62 |
+
---
|
| 63 |
|
| 64 |
+
**User Query:**
|
| 65 |
+
---
|
| 66 |
+
{request.query_text}
|
| 67 |
+
---
|
| 68 |
|
| 69 |
+
**JSON Response:**
|
| 70 |
+
"""
|
| 71 |
+
}
|
| 72 |
+
]
|
| 73 |
|
| 74 |
+
# The prompt template for the model
|
| 75 |
+
prompt = generator.tokenizer.apply_chat_template(
|
| 76 |
+
messages,
|
| 77 |
+
tokenize=False,
|
| 78 |
+
add_generation_prompt=True
|
| 79 |
+
)
|
| 80 |
|
| 81 |
try:
|
| 82 |
# Generate the response from the LLM
|
| 83 |
+
outputs = generator(
|
| 84 |
+
prompt,
|
| 85 |
+
max_new_tokens=256, # Max tokens for the generated response
|
| 86 |
+
do_sample=True,
|
| 87 |
+
temperature=0.7,
|
| 88 |
+
top_k=50,
|
| 89 |
+
top_p=0.95
|
| 90 |
+
)
|
| 91 |
+
generated_text = outputs[0]["generated_text"]
|
| 92 |
|
| 93 |
+
# The model's output will include our prompt, so we find the JSON part.
|
|
|
|
| 94 |
json_start = generated_text.find('{')
|
| 95 |
json_end = generated_text.rfind('}') + 1
|
| 96 |
|
| 97 |
+
if json_start != -1 and json_end > json_start:
|
| 98 |
cleaned_json = generated_text[json_start:json_end]
|
|
|
|
|
|
|
| 99 |
return cleaned_json
|
| 100 |
else:
|
|
|
|
| 101 |
return {"error": "Failed to generate valid JSON.", "raw_output": generated_text}
|
| 102 |
|
| 103 |
except Exception as e:
|
| 104 |
print(f"Error during analysis: {e}")
|
| 105 |
+
return {"error": f"An error occurred during analysis: {str(e)}"}
|
| 106 |
|
| 107 |
# A simple root endpoint to confirm the server is running.
|
| 108 |
@app.get("/")
|