Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pdf_airavata_qa.py
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from langchain.document_loaders import PyPDFLoader
|
| 5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
import faiss
|
| 8 |
+
import numpy as np
|
| 9 |
+
import requests
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
# ----------------------------
|
| 13 |
+
# 1. Load and split PDF
|
| 14 |
+
# ----------------------------
|
| 15 |
+
def load_and_chunk(pdf_path):
|
| 16 |
+
loader = PyPDFLoader(pdf_path)
|
| 17 |
+
docs = loader.load()
|
| 18 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 19 |
+
chunks = splitter.split_documents(docs)
|
| 20 |
+
texts = [c.page_content for c in chunks]
|
| 21 |
+
return texts
|
| 22 |
+
|
| 23 |
+
# ----------------------------
|
| 24 |
+
# 2. Build embedding index
|
| 25 |
+
# ----------------------------
|
| 26 |
+
def build_index(texts):
|
| 27 |
+
embed_model = SentenceTransformer('all-mpnet-base-v2') # You can choose another model
|
| 28 |
+
embeddings = embed_model.encode(texts, convert_to_numpy=True)
|
| 29 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 30 |
+
index.add(embeddings)
|
| 31 |
+
return index, embeddings
|
| 32 |
+
|
| 33 |
+
# ----------------------------
|
| 34 |
+
# 3. Airavata API call
|
| 35 |
+
# ----------------------------
|
| 36 |
+
def call_airavata(prompt):
|
| 37 |
+
# Example: Using HuggingFace Inference API (replace with your key or local endpoint)
|
| 38 |
+
API_URL = "https://api-inference.huggingface.co/models/ai4bharat/airavata" # Check actual endpoint
|
| 39 |
+
API_TOKEN = os.environ.get("HF_API_TOKEN") # Set your token in environment
|
| 40 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
| 41 |
+
|
| 42 |
+
payload = {"inputs": prompt}
|
| 43 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 44 |
+
if response.status_code == 200:
|
| 45 |
+
result = response.json()
|
| 46 |
+
return result[0]['generated_text']
|
| 47 |
+
else:
|
| 48 |
+
return f"Error: {response.status_code} - {response.text}"
|
| 49 |
+
|
| 50 |
+
# ----------------------------
|
| 51 |
+
# 4. PDF Q&A function
|
| 52 |
+
# ----------------------------
|
| 53 |
+
texts, index = [], None
|
| 54 |
+
|
| 55 |
+
def qa(pdf_file, question):
|
| 56 |
+
global texts, index
|
| 57 |
+
if pdf_file is not None:
|
| 58 |
+
# Load PDF and build index
|
| 59 |
+
texts = load_and_chunk(pdf_file.name)
|
| 60 |
+
index, _ = build_index(texts)
|
| 61 |
+
|
| 62 |
+
if not texts:
|
| 63 |
+
return "Please upload a PDF first."
|
| 64 |
+
|
| 65 |
+
# Embed the question
|
| 66 |
+
embed_model = SentenceTransformer('all-mpnet-base-v2')
|
| 67 |
+
q_emb = embed_model.encode([question], convert_to_numpy=True)
|
| 68 |
+
|
| 69 |
+
# Retrieve top 5 relevant chunks
|
| 70 |
+
D, I = index.search(q_emb, k=5)
|
| 71 |
+
context = "\n\n".join([texts[i] for i in I[0]])
|
| 72 |
+
|
| 73 |
+
# Build prompt for Airavata
|
| 74 |
+
prompt = f"""
|
| 75 |
+
You are an AI assistant. Use the following document context to answer the question.
|
| 76 |
+
|
| 77 |
+
Context:
|
| 78 |
+
{context}
|
| 79 |
+
|
| 80 |
+
Question: {question}
|
| 81 |
+
|
| 82 |
+
Answer:
|
| 83 |
+
"""
|
| 84 |
+
# Get answer from Airavata
|
| 85 |
+
answer = call_airavata(prompt)
|
| 86 |
+
return answer
|
| 87 |
+
|
| 88 |
+
# ----------------------------
|
| 89 |
+
# 5. Gradio Interface
|
| 90 |
+
# ----------------------------
|
| 91 |
+
demo = gr.Interface(
|
| 92 |
+
fn=qa,
|
| 93 |
+
inputs=[
|
| 94 |
+
gr.File(label="Upload PDF"),
|
| 95 |
+
gr.Textbox(label="Ask your question", placeholder="Type a question about the PDF...")
|
| 96 |
+
],
|
| 97 |
+
outputs=gr.Textbox(label="Answer"),
|
| 98 |
+
title="PDF Q&A with Airavata",
|
| 99 |
+
description="Upload a PDF and ask questions. Airavata will answer based on the document."
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
demo.launch()
|