update
Browse files- examples/evaluation/step_1_run_evaluation.py +166 -0
- main.py +42 -20
- toolbox/vad/utils.py +15 -5
examples/evaluation/step_1_run_evaluation.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import argparse
|
| 4 |
+
import json
|
| 5 |
+
import os
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import sys
|
| 8 |
+
|
| 9 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
| 10 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
| 11 |
+
|
| 12 |
+
import librosa
|
| 13 |
+
from gradio_client import Client
|
| 14 |
+
import numpy as np
|
| 15 |
+
from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_args():
|
| 20 |
+
parser = argparse.ArgumentParser()
|
| 21 |
+
|
| 22 |
+
parser.add_argument(
|
| 23 |
+
"--test_set",
|
| 24 |
+
default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\en-SG\vad",
|
| 25 |
+
type=str
|
| 26 |
+
)
|
| 27 |
+
parser.add_argument(
|
| 28 |
+
"--output_file",
|
| 29 |
+
default=r"fsmn-vad.jsonl",
|
| 30 |
+
type=str
|
| 31 |
+
)
|
| 32 |
+
parser.add_argument("--expected_sample_rate", default=8000, type=int)
|
| 33 |
+
|
| 34 |
+
args = parser.parse_args()
|
| 35 |
+
return args
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_metrics(ground_truth, predictions, total_duration, step=0.01):
|
| 39 |
+
"""
|
| 40 |
+
基于时间点离散化的评估方法
|
| 41 |
+
:param ground_truth: 真实区间列表,格式 [[start1, end1], [start2, end2], ...]
|
| 42 |
+
:param predictions: 预测区间列表,格式同上
|
| 43 |
+
:param total_duration: 音频总时长(秒)
|
| 44 |
+
:param step: 时间离散化步长(默认10ms)
|
| 45 |
+
:return: 评估指标字典
|
| 46 |
+
"""
|
| 47 |
+
# 生成时间点数组
|
| 48 |
+
time_points = np.arange(0, total_duration, step)
|
| 49 |
+
|
| 50 |
+
# 生成标签数组
|
| 51 |
+
y_true = np.zeros_like(time_points, dtype=int)
|
| 52 |
+
y_pred = np.zeros_like(time_points, dtype=int)
|
| 53 |
+
|
| 54 |
+
# 标记真实语音区间
|
| 55 |
+
for start, end in ground_truth:
|
| 56 |
+
mask = (time_points >= start) & (time_points <= end)
|
| 57 |
+
y_true[mask] = 1
|
| 58 |
+
|
| 59 |
+
# 标记预测语音区间
|
| 60 |
+
for start, end in predictions:
|
| 61 |
+
mask = (time_points >= start) & (time_points <= end)
|
| 62 |
+
y_pred[mask] = 1
|
| 63 |
+
|
| 64 |
+
# 计算指标
|
| 65 |
+
result = {
|
| 66 |
+
"accuracy": accuracy_score(y_true, y_pred),
|
| 67 |
+
"precision": precision_score(y_true, y_pred, zero_division=0),
|
| 68 |
+
"recall": recall_score(y_true, y_pred, zero_division=0),
|
| 69 |
+
"f1": f1_score(y_true, y_pred, zero_division=0)
|
| 70 |
+
}
|
| 71 |
+
return result
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def main():
|
| 75 |
+
args = get_args()
|
| 76 |
+
|
| 77 |
+
client = Client("http://127.0.0.1:7866/")
|
| 78 |
+
|
| 79 |
+
test_set = Path(args.test_set)
|
| 80 |
+
output_file = Path(args.output_file)
|
| 81 |
+
|
| 82 |
+
annotation_file = test_set / "vad.json"
|
| 83 |
+
|
| 84 |
+
with open(annotation_file.as_posix(), "r", encoding="utf-8") as f:
|
| 85 |
+
annotation = json.load(f)
|
| 86 |
+
|
| 87 |
+
total = 0
|
| 88 |
+
total_accuracy = 0
|
| 89 |
+
total_precision = 0
|
| 90 |
+
total_recall = 0
|
| 91 |
+
total_f1 = 0
|
| 92 |
+
total_duration = 0
|
| 93 |
+
progress_bar = tqdm(desc="evaluation")
|
| 94 |
+
with open(output_file.as_posix(), "w", encoding="utf-8") as f:
|
| 95 |
+
for row in annotation:
|
| 96 |
+
filename = row["filename"]
|
| 97 |
+
ground_truth_vad_segments = row["vad_segments"]
|
| 98 |
+
|
| 99 |
+
filename = test_set / filename
|
| 100 |
+
|
| 101 |
+
_, _, _, message = client.predict(
|
| 102 |
+
audio_file_t={
|
| 103 |
+
"path": filename.as_posix(),
|
| 104 |
+
"meta": {"_type": "gradio.FileData"}
|
| 105 |
+
},
|
| 106 |
+
audio_microphone_t=None,
|
| 107 |
+
start_ring_rate=0.5,
|
| 108 |
+
end_ring_rate=0.5,
|
| 109 |
+
ring_max_length=1,
|
| 110 |
+
min_silence_length=6,
|
| 111 |
+
max_speech_length=100000,
|
| 112 |
+
min_speech_length=15,
|
| 113 |
+
engine="fsmn-vad-by-webrtcvad-nx2-dns3",
|
| 114 |
+
api_name="/when_click_vad_button"
|
| 115 |
+
)
|
| 116 |
+
js = json.loads(message)
|
| 117 |
+
prediction_vad_segments = js["vad_segments"]
|
| 118 |
+
duration = js["duration"]
|
| 119 |
+
|
| 120 |
+
metrics = get_metrics(ground_truth_vad_segments, prediction_vad_segments, duration)
|
| 121 |
+
accuracy = metrics["accuracy"]
|
| 122 |
+
precision = metrics["precision"]
|
| 123 |
+
recall = metrics["recall"]
|
| 124 |
+
f1 = metrics["f1"]
|
| 125 |
+
|
| 126 |
+
row_ = {
|
| 127 |
+
"filename": filename.as_posix(),
|
| 128 |
+
"duration": duration,
|
| 129 |
+
"ground_truth": ground_truth_vad_segments,
|
| 130 |
+
"prediction": prediction_vad_segments,
|
| 131 |
+
|
| 132 |
+
"accuracy": accuracy,
|
| 133 |
+
"precision": precision,
|
| 134 |
+
"recall": recall,
|
| 135 |
+
"f1": f1,
|
| 136 |
+
}
|
| 137 |
+
row_ = json.dumps(row_, ensure_ascii=False)
|
| 138 |
+
f.write(f"{row_}\n")
|
| 139 |
+
|
| 140 |
+
total += 1
|
| 141 |
+
total_accuracy += accuracy
|
| 142 |
+
total_precision += precision
|
| 143 |
+
total_recall += recall
|
| 144 |
+
total_f1 += f1
|
| 145 |
+
total_duration += duration
|
| 146 |
+
|
| 147 |
+
average_accuracy = total_accuracy / total
|
| 148 |
+
average_precision = total_precision / total
|
| 149 |
+
average_recall = total_recall / total
|
| 150 |
+
average_f1 = total_f1 / total
|
| 151 |
+
|
| 152 |
+
progress_bar.update(1)
|
| 153 |
+
progress_bar.set_postfix({
|
| 154 |
+
"total": total,
|
| 155 |
+
"accuracy": average_accuracy,
|
| 156 |
+
"precision": average_precision,
|
| 157 |
+
"recall": average_recall,
|
| 158 |
+
"f1": average_f1,
|
| 159 |
+
"total_duration": f"{round(total_duration / 60, 4)}min",
|
| 160 |
+
})
|
| 161 |
+
|
| 162 |
+
return
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
if __name__ == "__main__":
|
| 166 |
+
main()
|
main.py
CHANGED
|
@@ -101,6 +101,7 @@ def generate_image(signal: np.ndarray, speech_probs: np.ndarray, sample_rate: in
|
|
| 101 |
|
| 102 |
def when_click_vad_button(audio_file_t = None, audio_microphone_t = None,
|
| 103 |
start_ring_rate: float = 0.5, end_ring_rate: float = 0.3,
|
|
|
|
| 104 |
min_silence_length: int = 2,
|
| 105 |
max_speech_length: int = 10000, min_speech_length: int = 10,
|
| 106 |
engine: str = None,
|
|
@@ -112,7 +113,7 @@ def when_click_vad_button(audio_file_t = None, audio_microphone_t = None,
|
|
| 112 |
audio_t: Tuple = audio_file_t or audio_microphone_t
|
| 113 |
|
| 114 |
sample_rate, signal = audio_t
|
| 115 |
-
audio_duration = signal.shape[-1] //
|
| 116 |
audio = np.array(signal / (1 << 15), dtype=np.float32)
|
| 117 |
|
| 118 |
infer_engine_param = vad_engines.get(engine)
|
|
@@ -128,38 +129,55 @@ def when_click_vad_button(audio_file_t = None, audio_microphone_t = None,
|
|
| 128 |
vad_info = infer_engine.infer(audio)
|
| 129 |
time_cost = time.time() - begin
|
| 130 |
|
| 131 |
-
fpr = time_cost / audio_duration
|
| 132 |
-
info = {
|
| 133 |
-
"time_cost": round(time_cost, 4),
|
| 134 |
-
"audio_duration": round(audio_duration, 4),
|
| 135 |
-
"fpr": round(fpr, 4)
|
| 136 |
-
}
|
| 137 |
-
message = json.dumps(info, ensure_ascii=False, indent=4)
|
| 138 |
-
|
| 139 |
probs = vad_info["probs"]
|
| 140 |
lsnr = vad_info["lsnr"]
|
| 141 |
# lsnr = lsnr / np.max(np.abs(lsnr))
|
| 142 |
lsnr = lsnr / 30
|
| 143 |
|
| 144 |
frame_step = infer_engine.config.hop_size
|
| 145 |
-
probs_ = process_speech_probs(audio, probs, frame_step)
|
| 146 |
-
probs_image = generate_image(audio, probs_)
|
| 147 |
-
|
| 148 |
-
lsnr_ = process_speech_probs(audio, lsnr, frame_step)
|
| 149 |
-
lsnr_image = generate_image(audio, lsnr_)
|
| 150 |
|
| 151 |
# post process
|
| 152 |
vad_post_process = PostProcess(
|
| 153 |
start_ring_rate=start_ring_rate,
|
| 154 |
end_ring_rate=end_ring_rate,
|
|
|
|
| 155 |
min_silence_length=min_silence_length,
|
| 156 |
max_speech_length=max_speech_length,
|
| 157 |
min_speech_length=min_speech_length
|
| 158 |
)
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
| 161 |
vad_image = generate_image(audio, vad_)
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
except Exception as e:
|
| 164 |
raise gr.Error(f"vad failed, error type: {type(e)}, error text: {str(e)}.")
|
| 165 |
|
|
@@ -240,10 +258,12 @@ def main():
|
|
| 240 |
with gr.Row():
|
| 241 |
vad_start_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="start_ring_rate")
|
| 242 |
vad_end_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="end_ring_rate")
|
| 243 |
-
vad_min_silence_length = gr.Number(value=30, label="min_silence_length")
|
| 244 |
with gr.Row():
|
| 245 |
-
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
| 247 |
vad_engine = gr.Dropdown(choices=vad_engine_choices, value=vad_engine_choices[0], label="engine")
|
| 248 |
vad_button = gr.Button(variant="primary")
|
| 249 |
with gr.Column(variant="panel", scale=5):
|
|
@@ -257,6 +277,7 @@ def main():
|
|
| 257 |
inputs=[
|
| 258 |
vad_audio_file, vad_audio_microphone,
|
| 259 |
vad_start_ring_rate, vad_end_ring_rate,
|
|
|
|
| 260 |
vad_min_silence_length,
|
| 261 |
vad_max_speech_length, vad_min_speech_length,
|
| 262 |
vad_engine,
|
|
@@ -288,7 +309,8 @@ def main():
|
|
| 288 |
# share=True,
|
| 289 |
share=False if platform.system() == "Windows" else False,
|
| 290 |
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
|
| 291 |
-
server_port=args.server_port
|
|
|
|
| 292 |
)
|
| 293 |
return
|
| 294 |
|
|
|
|
| 101 |
|
| 102 |
def when_click_vad_button(audio_file_t = None, audio_microphone_t = None,
|
| 103 |
start_ring_rate: float = 0.5, end_ring_rate: float = 0.3,
|
| 104 |
+
ring_max_length: int = 10,
|
| 105 |
min_silence_length: int = 2,
|
| 106 |
max_speech_length: int = 10000, min_speech_length: int = 10,
|
| 107 |
engine: str = None,
|
|
|
|
| 113 |
audio_t: Tuple = audio_file_t or audio_microphone_t
|
| 114 |
|
| 115 |
sample_rate, signal = audio_t
|
| 116 |
+
audio_duration = signal.shape[-1] // sample_rate
|
| 117 |
audio = np.array(signal / (1 << 15), dtype=np.float32)
|
| 118 |
|
| 119 |
infer_engine_param = vad_engines.get(engine)
|
|
|
|
| 129 |
vad_info = infer_engine.infer(audio)
|
| 130 |
time_cost = time.time() - begin
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
probs = vad_info["probs"]
|
| 133 |
lsnr = vad_info["lsnr"]
|
| 134 |
# lsnr = lsnr / np.max(np.abs(lsnr))
|
| 135 |
lsnr = lsnr / 30
|
| 136 |
|
| 137 |
frame_step = infer_engine.config.hop_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
# post process
|
| 140 |
vad_post_process = PostProcess(
|
| 141 |
start_ring_rate=start_ring_rate,
|
| 142 |
end_ring_rate=end_ring_rate,
|
| 143 |
+
ring_max_length=ring_max_length,
|
| 144 |
min_silence_length=min_silence_length,
|
| 145 |
max_speech_length=max_speech_length,
|
| 146 |
min_speech_length=min_speech_length
|
| 147 |
)
|
| 148 |
+
vad_segments = vad_post_process.get_vad_segments(probs)
|
| 149 |
+
vad_flags = vad_post_process.get_vad_flags(probs, vad_segments)
|
| 150 |
+
|
| 151 |
+
# vad_image
|
| 152 |
+
vad_ = process_speech_probs(audio, vad_flags, frame_step)
|
| 153 |
vad_image = generate_image(audio, vad_)
|
| 154 |
|
| 155 |
+
# probs_image
|
| 156 |
+
probs_ = process_speech_probs(audio, probs, frame_step)
|
| 157 |
+
probs_image = generate_image(audio, probs_)
|
| 158 |
+
|
| 159 |
+
# lsnr_image
|
| 160 |
+
lsnr_ = process_speech_probs(audio, lsnr, frame_step)
|
| 161 |
+
lsnr_image = generate_image(audio, lsnr_)
|
| 162 |
+
|
| 163 |
+
# vad segment
|
| 164 |
+
vad_segments = [
|
| 165 |
+
[
|
| 166 |
+
v[0] * frame_step / sample_rate,
|
| 167 |
+
v[1] * frame_step / sample_rate
|
| 168 |
+
] for v in vad_segments
|
| 169 |
+
]
|
| 170 |
+
|
| 171 |
+
# message
|
| 172 |
+
rtf = time_cost / audio_duration
|
| 173 |
+
info = {
|
| 174 |
+
"vad_segments": vad_segments,
|
| 175 |
+
"time_cost": round(time_cost, 4),
|
| 176 |
+
"duration": round(audio_duration, 4),
|
| 177 |
+
"rtf": round(rtf, 4)
|
| 178 |
+
}
|
| 179 |
+
message = json.dumps(info, ensure_ascii=False, indent=4)
|
| 180 |
+
|
| 181 |
except Exception as e:
|
| 182 |
raise gr.Error(f"vad failed, error type: {type(e)}, error text: {str(e)}.")
|
| 183 |
|
|
|
|
| 258 |
with gr.Row():
|
| 259 |
vad_start_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="start_ring_rate")
|
| 260 |
vad_end_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="end_ring_rate")
|
|
|
|
| 261 |
with gr.Row():
|
| 262 |
+
vad_ring_max_length = gr.Number(value=10, label="ring_max_length (*10ms)")
|
| 263 |
+
vad_min_silence_length = gr.Number(value=6, label="min_silence_length (*10ms)")
|
| 264 |
+
with gr.Row():
|
| 265 |
+
vad_max_speech_length = gr.Number(value=100000, label="max_speech_length (*10ms)")
|
| 266 |
+
vad_min_speech_length = gr.Number(value=15, label="min_speech_length (*10ms)")
|
| 267 |
vad_engine = gr.Dropdown(choices=vad_engine_choices, value=vad_engine_choices[0], label="engine")
|
| 268 |
vad_button = gr.Button(variant="primary")
|
| 269 |
with gr.Column(variant="panel", scale=5):
|
|
|
|
| 277 |
inputs=[
|
| 278 |
vad_audio_file, vad_audio_microphone,
|
| 279 |
vad_start_ring_rate, vad_end_ring_rate,
|
| 280 |
+
vad_ring_max_length,
|
| 281 |
vad_min_silence_length,
|
| 282 |
vad_max_speech_length, vad_min_speech_length,
|
| 283 |
vad_engine,
|
|
|
|
| 309 |
# share=True,
|
| 310 |
share=False if platform.system() == "Windows" else False,
|
| 311 |
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
|
| 312 |
+
server_port=args.server_port,
|
| 313 |
+
show_error=True
|
| 314 |
)
|
| 315 |
return
|
| 316 |
|
toolbox/vad/utils.py
CHANGED
|
@@ -9,18 +9,20 @@ class PostProcess(object):
|
|
| 9 |
def __init__(self,
|
| 10 |
start_ring_rate: float = 0.5,
|
| 11 |
end_ring_rate: float = 0.5,
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
| 15 |
):
|
| 16 |
self.start_ring_rate = start_ring_rate
|
| 17 |
self.end_ring_rate = end_ring_rate
|
|
|
|
| 18 |
self.max_speech_length = max_speech_length
|
| 19 |
self.min_speech_length = min_speech_length
|
| 20 |
self.min_silence_length = min_silence_length
|
| 21 |
|
| 22 |
# segments
|
| 23 |
-
self.ring_buffer = collections.deque(maxlen=
|
| 24 |
self.triggered = False
|
| 25 |
|
| 26 |
# vad segments
|
|
@@ -117,19 +119,27 @@ class PostProcess(object):
|
|
| 117 |
vad_segments = vad_segments + [[self.start_idx, self.end_idx]]
|
| 118 |
return vad_segments
|
| 119 |
|
| 120 |
-
def
|
| 121 |
vad_segments = list()
|
| 122 |
segments = self.vad(probs)
|
| 123 |
vad_segments += segments
|
| 124 |
segments = self.last_vad_segments()
|
| 125 |
vad_segments += segments
|
| 126 |
|
|
|
|
|
|
|
|
|
|
| 127 |
result = [0] * len(probs)
|
| 128 |
for begin, end in vad_segments:
|
| 129 |
result[begin: end] = [1] * (end - begin)
|
| 130 |
|
| 131 |
return result
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
if __name__ == "__main__":
|
| 135 |
pass
|
|
|
|
| 9 |
def __init__(self,
|
| 10 |
start_ring_rate: float = 0.5,
|
| 11 |
end_ring_rate: float = 0.5,
|
| 12 |
+
ring_max_length: int = 10,
|
| 13 |
+
min_silence_length: int = 6,
|
| 14 |
+
max_speech_length: float = 100000,
|
| 15 |
+
min_speech_length: float = 15,
|
| 16 |
):
|
| 17 |
self.start_ring_rate = start_ring_rate
|
| 18 |
self.end_ring_rate = end_ring_rate
|
| 19 |
+
self.ring_max_length = ring_max_length
|
| 20 |
self.max_speech_length = max_speech_length
|
| 21 |
self.min_speech_length = min_speech_length
|
| 22 |
self.min_silence_length = min_silence_length
|
| 23 |
|
| 24 |
# segments
|
| 25 |
+
self.ring_buffer = collections.deque(maxlen=self.ring_max_length)
|
| 26 |
self.triggered = False
|
| 27 |
|
| 28 |
# vad segments
|
|
|
|
| 119 |
vad_segments = vad_segments + [[self.start_idx, self.end_idx]]
|
| 120 |
return vad_segments
|
| 121 |
|
| 122 |
+
def get_vad_segments(self, probs: List[float]):
|
| 123 |
vad_segments = list()
|
| 124 |
segments = self.vad(probs)
|
| 125 |
vad_segments += segments
|
| 126 |
segments = self.last_vad_segments()
|
| 127 |
vad_segments += segments
|
| 128 |
|
| 129 |
+
return vad_segments
|
| 130 |
+
|
| 131 |
+
def get_vad_flags(self, probs: List[float], vad_segments: List[Tuple[int, int]]):
|
| 132 |
result = [0] * len(probs)
|
| 133 |
for begin, end in vad_segments:
|
| 134 |
result[begin: end] = [1] * (end - begin)
|
| 135 |
|
| 136 |
return result
|
| 137 |
|
| 138 |
+
def post_process(self, probs: List[float]):
|
| 139 |
+
vad_segments = self.get_vad_segments(probs)
|
| 140 |
+
vad_flags = self.get_vad_flags(probs, vad_segments)
|
| 141 |
+
return vad_flags
|
| 142 |
+
|
| 143 |
|
| 144 |
if __name__ == "__main__":
|
| 145 |
pass
|