File size: 16,794 Bytes
5a05fa9 6b070cd 5a05fa9 fba21bb 5a05fa9 fba21bb 5a05fa9 fba21bb 5a05fa9 fba21bb 5a05fa9 424c620 5a05fa9 df184ed 5a05fa9 df184ed 5a05fa9 a0c1734 5a05fa9 a0c1734 5a05fa9 4403e4e 5a05fa9 6b070cd 5a05fa9 df184ed 5a05fa9 df184ed 5a05fa9 df184ed 5a05fa9 fba21bb 5a05fa9 df184ed 5a05fa9 df184ed 6b070cd df184ed a43203f df184ed 5a05fa9 df184ed 5a05fa9 df184ed 5a05fa9 df184ed 5a05fa9 df184ed 5a05fa9 df184ed 5a05fa9 df184ed 6b070cd df184ed 5a05fa9 df184ed 5a05fa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
#!/usr/bin/env python3
# eval_arena.py - Evaluate HuggingFace datasets against AI judges
import argparse
import json
import time
from typing import Any, Dict, List
import pandas as pd
from datasets import load_dataset
from loguru import logger
from sklearn.metrics import balanced_accuracy_score, f1_score
from tqdm import tqdm
from src.judge import JudgeManager
def load_models(
models_path: str = "models.jsonl",
) -> List[Dict[str, Any]]:
"""Load models from a JSONL file"""
models = []
with open(models_path, "r") as f:
for line in f:
if line.strip(): # Skip empty lines
try:
models.append(json.loads(line))
except json.JSONDecodeError:
logger.warning(f"Failed to parse line: {line}")
return models
def get_test_type_from_dataset(dataset_name: str) -> str:
"""Determine the appropriate test type based on the dataset name"""
if any(kw in dataset_name.lower() for kw in ["injection", "jailbreak"]):
return "prompt_injections"
elif any(kw in dataset_name.lower() for kw in ["safety", "harm", "toxic"]):
return "safety"
elif any(kw in dataset_name.lower() for kw in ["fact", "ground", "truthful"]):
return "grounding"
elif any(kw in dataset_name.lower() for kw in ["policy", "guideline", "ethics"]):
return "policy"
else:
return "generic" # Generic evaluation as fallback
def parse_ground_truth(
label_column: str,
label: Any,
safe_label: str = "SAFE",
unsafe_label: str = "UNSAFE",
) -> str:
"""Convert various label formats to a standardized format for comparison"""
if isinstance(label, bool):
if label_column.lower() == "safe":
return "SAFE" if not label else "UNSAFE"
return "SAFE" if label else "UNSAFE"
elif isinstance(label, (int, float)):
if label_column.lower() == "safe":
return safe_label if label > 0.5 else unsafe_label
return "UNSAFE" if label > 0.5 else "SAFE"
elif isinstance(label, str):
label = label.upper()
# Map common label formats to the ones used by judges
mappings = {
"TRUE": "GROUNDED",
"FALSE": "UNGROUNDED",
"YES": "GROUNDED",
"NO": "UNGROUNDED",
"PASS": "SAFE",
"FAIL": "UNSAFE",
"UNSAFE": "UNSAFE",
"SAFE": "SAFE",
"HARMFUL": "UNSAFE",
"NOT_HARMFUL": "SAFE",
"COMPLIANT": "COMPLIES",
"NONCOMPLIANT": "VIOLATION",
"GOOD": "GOOD_RESPONSE",
"BAD": "POOR_RESPONSE",
"BENIGN": "SAFE",
"JAILBREAK": "PROMPT_INJECTION",
}
return mappings.get(label, label)
else:
logger.warning(f"Unrecognized label format: {label}, type: {type(label)}")
return str(label).upper()
def calculate_metrics(
predictions: List[str],
ground_truth: List[str],
) -> Dict[str, float]:
"""Calculate performance metrics"""
metrics = {}
# Filter out any pairs where we don't have both prediction and ground truth
valid_pairs = [(p, gt) for p, gt in zip(predictions, ground_truth) if p and gt]
if not valid_pairs:
logger.warning("No valid prediction-ground truth pairs for metric calculation")
return {"f1": 0, "balanced_accuracy": 0}
preds, gts = zip(*valid_pairs)
# Get unique labels
unique_labels = list(set(preds) | set(gts))
if len(unique_labels) == 1:
# Only one class present, can't calculate balanced accuracy
metrics["balanced_accuracy"] = 1.0 if preds == gts else 0.0
else:
try:
metrics["balanced_accuracy"] = balanced_accuracy_score(gts, preds)
except Exception as e:
logger.error(f"Error calculating balanced accuracy: {e}")
metrics["balanced_accuracy"] = 0
try:
# Try multi-class F1
metrics["f1"] = f1_score(gts, preds, average="weighted", zero_division=0)
except Exception as e:
logger.error(f"Error calculating F1 score: {e}")
metrics["f1"] = 0
return metrics
def extract_label_from_evaluation(evaluation: Dict[str, Any]) -> str:
"""Extract the label from the judge evaluation result"""
# Check if we have a raw evaluation string
if "evaluation" in evaluation:
eval_text = evaluation["evaluation"]
# Look for "LABEL:" in the evaluation text
import re
label_match = re.search(r"LABEL:\s*(\w+(?:_\w+)*)", eval_text, re.IGNORECASE)
if label_match:
return label_match.group(1).upper()
# If no label found in evaluation, try other fields
if "label" in evaluation:
return evaluation["label"].upper()
logger.warning(f"Could not extract label from evaluation: {evaluation}")
return ""
def evaluate_dataset(
dataset_name: str,
models_path: str = "models.jsonl",
max_samples: int = None,
test_type: str = None,
dataset_config: str = None,
) -> None:
"""Main function to evaluate a dataset against AI judges"""
logger.info(f"Evaluating dataset: {dataset_name}")
# Load models from models.jsonl
models = load_models(models_path)
if not models:
logger.error("No models found in models.jsonl")
return
logger.info(f"Loaded {len(models)} models")
# Initialize JudgeManager with models
judge_manager = JudgeManager(models)
# Determine which split to use
try:
# Load the dataset with config if provided
if dataset_config:
logger.info(f"Using dataset config: {dataset_config}")
dataset = load_dataset(dataset_name, dataset_config)
else:
try:
dataset = load_dataset(dataset_name)
except ValueError as e:
# If error mentions config name is missing, provide help
if "Config name is missing" in str(e):
logger.error(f"This dataset requires a config name. {str(e)}")
logger.error("Please use --dataset-config to specify the config.")
return
raise e
logger.info(f"Available splits: {list(dataset.keys())}")
# Prefer test split if available, otherwise use validation or train
if "test" in dataset:
split = "test"
elif "validation" in dataset:
split = "validation"
elif "train" in dataset:
split = "train"
else:
# Use the first available split
split = list(dataset.keys())[0]
logger.info(f"Using split: {split}")
data = dataset[split]
# Limit the number of samples if specified
if max_samples and max_samples > 0:
data = data.select(range(min(max_samples, len(data))))
logger.info(f"Dataset contains {len(data)} samples")
except Exception as e:
logger.error(f"Error loading dataset {dataset_name}: {e}")
return
# Try to determine the columns for input and output
# This is a heuristic as different datasets have different structures
column_names = data.column_names
logger.info(f"Dataset columns: {column_names}")
# Look for common column names that might contain input text
input_column = None
possible_input_names = [
"input",
"question",
"prompt",
"instruction",
"context",
"text",
"adversarial",
"doc",
]
for possible_name in possible_input_names:
matches = [col for col in column_names if possible_name in col.lower()]
if matches:
input_column = matches[0]
break
# If still not found, try to use the first string column
if not input_column:
for col in column_names:
if isinstance(data[0][col], str):
input_column = col
break
# Similar approach for output column
output_column = None
possible_output_names = [
"output",
"answer",
"response",
"completion",
"generation",
"claim",
]
for possible_name in possible_output_names:
matches = [col for col in column_names if possible_name in col.lower()]
if matches:
output_column = matches[0]
break
# Look for label/ground truth column
label_column = None
possible_label_names = [
"label",
"ground_truth",
"class",
"target",
"gold",
"correct",
"type",
"safe",
]
for possible_name in possible_label_names:
matches = [col for col in column_names if possible_name in col.lower()]
if matches:
label_column = matches[0]
break
# Determine test type based on dataset name or use provided test_type
if test_type:
logger.info(f"Using provided test type: {test_type}")
else:
test_type = get_test_type_from_dataset(dataset_name)
logger.info(f"Auto-detected test type: {test_type}")
# Check if we have the minimum required columns based on test type
input_only_test_types = ["safety", "prompt_injections"]
requires_output = test_type not in input_only_test_types
if not input_column:
logger.error("Could not determine input column, required for all test types.")
return
if requires_output and not output_column:
logger.error(f"Test type '{test_type}' requires output column, none found.")
return
# Log what columns we're using
column_info = f"Using columns: input={input_column}"
if output_column:
column_info += f", output={output_column}"
if label_column:
column_info += f", label={label_column}"
else:
logger.warning("No label column found. Cannot compare against ground truth.")
logger.info(column_info)
# Initialize results storage
raw_results = []
judge_metrics = {
judge["id"]: {
"judge_id": judge["id"],
"judge_name": judge["name"],
"predictions": [],
"ground_truths": [],
"total_time": 0,
"count": 0,
"correct": 0,
}
for judge in models
}
# Process each sample in the dataset
for i, sample in enumerate(tqdm(data)):
input_text = sample[input_column]
# Use empty string as output if output column is not available
# but only for test types that can work with just input
output_text = ""
if output_column and output_column in sample:
output_text = sample[output_column]
elif requires_output:
logger.warning(f"Sample {i} missing output field required for '{test_type}'")
continue
# Get ground truth if available
ground_truth = None
if label_column and label_column in sample:
ground_truth = parse_ground_truth(label_column, sample[label_column])
# Evaluate with each judge
for judge in models:
judge_id = judge["id"]
try:
# Time the evaluation
start_time = time.time()
logger.info(f"Evaluating sample {i} with judge {judge_id}")
# Get evaluation from judge
evaluation = judge_manager.get_evaluation(
judge=judge,
input_text=input_text,
output_text=output_text,
test_type=test_type,
)
elapsed_time = time.time() - start_time
# Extract label from evaluation
prediction = extract_label_from_evaluation(evaluation)
# Store raw result
raw_result = {
"dataset": dataset_name,
"sample_id": i,
"judge_id": judge_id,
"judge_name": judge["name"],
"input": input_text,
"output": output_text,
"prediction": prediction,
"ground_truth": ground_truth,
"latency": elapsed_time,
"evaluation": evaluation.get("evaluation", ""),
}
raw_results.append(raw_result)
# Update metrics
judge_metrics[judge_id]["predictions"].append(prediction)
judge_metrics[judge_id]["total_time"] += elapsed_time
judge_metrics[judge_id]["count"] += 1
if ground_truth:
judge_metrics[judge_id]["ground_truths"].append(ground_truth)
if prediction == ground_truth:
judge_metrics[judge_id]["correct"] += 1
except Exception as e:
logger.error(f"Error evaluating sample {i} with judge {judge_id}: {e}")
# Save raw results
raw_df = pd.DataFrame(raw_results)
raw_results_filename = f"{dataset_name.replace('/', '-')}-raw-results.csv"
raw_results_path = f"benchmarks/{raw_results_filename}"
raw_df.to_csv(raw_results_path, index=False)
logger.info(f"Raw results saved to {raw_results_path}")
# Calculate final metrics for each judge
judges_metrics = []
for judge_id in raw_df["judge_id"].unique():
judge_results = raw_df[raw_df["judge_id"] == judge_id].copy()
if test_type == "prompt_injections":
gt_label = "PROMPT_INJECTION"
elif test_type == "grounding":
gt_label = "GROUNDED"
else:
gt_label = "UNSAFE"
judge_results["ground_truth_binary"] = judge_results["ground_truth"].isin(
[gt_label],
)
judge_results["prediction_binary"] = judge_results["prediction"].isin(
[gt_label],
)
if judge_results["ground_truth_binary"].any():
f1 = f1_score(
judge_results["ground_truth_binary"],
judge_results["prediction_binary"],
average="binary",
pos_label=True, # We are comparing boolean Series now
)
else:
logger.warning(f"No positive ground truth samples for judge {judge_id}, setting F1 to 0.")
f1 = 0.0
bacc = balanced_accuracy_score(
judge_results["ground_truth"].astype(str),
judge_results["prediction"].astype(str),
)
judge_results["correct"] = judge_results["prediction"] == judge_results["ground_truth"]
avg_latency = judge_results["latency"].mean()
total_time = judge_results["latency"].sum()
print(
f"Judge {judge_id} F1: {f1:.4f}, BAcc: {bacc:.4f}, "
f"Avg Latency: {avg_latency:.2f}s, Total Time: {total_time:.2f}s"
)
# aggregate the metrics to a dataframe
judges_metrics.append(
{
"judge_id": judge_id,
"judge_name": judge_results["judge_name"].iloc[0],
"dataset": dataset_name,
"f1": f1,
"bacc": bacc,
"avg_latency": avg_latency,
"total_time": total_time,
"count": len(judge_results),
"correct": judge_results["correct"].sum(),
},
)
judges_metrics_df = pd.DataFrame(judges_metrics)
judges_metrics_filename = f"{dataset_name.replace('/', '-')}-judges-metrics.csv"
judges_metrics_path = f"benchmarks/{judges_metrics_filename}"
judges_metrics_df.to_csv(judges_metrics_path, index=False)
logger.info(f"Judge metrics saved to {judges_metrics_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluate HuggingFace datasets against AI judges")
parser.add_argument("dataset", help="HuggingFace dataset name (e.g., 'truthful_qa')")
parser.add_argument("--models", default="models.jsonl", help="Path to models JSONL file")
parser.add_argument(
"--max-samples",
type=int,
help="Maximum number of samples to evaluate",
)
parser.add_argument(
"--test-type",
choices=[
"prompt_injections",
"safety",
"grounding",
"policy",
"generic",
],
help="Override test type (default: auto-detect from dataset name)",
)
parser.add_argument(
"--dataset-config",
help="Dataset config name (e.g., 'train' for allenai/wildjailbreak)",
)
args = parser.parse_args()
evaluate_dataset(
args.dataset,
args.models,
args.max_samples,
args.test_type,
args.dataset_config,
)
|