File size: 19,920 Bytes
8c8b2c7
 
af28f6f
 
 
 
8c8b2c7
af28f6f
 
 
 
 
 
 
 
 
 
 
b286969
 
af28f6f
 
94407ab
 
af28f6f
 
8c8b2c7
af28f6f
 
 
b286969
 
af28f6f
 
94407ab
 
af28f6f
 
8c8b2c7
af28f6f
0e83216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af28f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b44df2a
af28f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94407ab
af28f6f
 
 
 
 
 
b44df2a
af28f6f
 
 
 
b44df2a
3df66f9
94407ab
 
af28f6f
 
94407ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df66f9
b286969
af28f6f
 
 
94407ab
af28f6f
 
 
94407ab
af28f6f
 
94407ab
 
 
 
 
 
af28f6f
 
 
 
 
 
 
 
 
 
 
 
8c8b2c7
 
0e83216
 
 
 
8c8b2c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af28f6f
 
 
 
 
 
 
94407ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af28f6f
 
b44df2a
 
 
 
 
 
 
b286969
 
af28f6f
94407ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b286969
 
 
 
 
94407ab
 
 
 
 
 
 
 
 
b286969
 
 
 
 
 
94407ab
 
 
 
 
 
 
 
 
 
b286969
af28f6f
 
8c8b2c7
af28f6f
 
 
8c8b2c7
af28f6f
 
 
 
 
8c8b2c7
af28f6f
 
94407ab
 
 
8c8b2c7
94407ab
 
 
 
 
8c8b2c7
94407ab
 
af28f6f
 
 
8c8b2c7
af28f6f
 
8c8b2c7
 
0e83216
8c8b2c7
 
 
 
 
 
0e83216
8c8b2c7
 
 
0e83216
8c8b2c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b44df2a
 
 
 
 
 
 
 
 
 
8c8b2c7
af28f6f
 
 
 
 
8c8b2c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af28f6f
94407ab
 
8c8b2c7
94407ab
8c8b2c7
 
 
 
 
 
 
 
 
 
6b070cd
8c8b2c7
 
 
 
 
 
 
 
 
 
94407ab
8c8b2c7
 
 
 
 
 
 
 
 
 
94407ab
8c8b2c7
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import glob
import os
from typing import Callable

import gradio as gr
import pandas as pd
from loguru import logger

from src.config import TEST_TYPES


class UI:
    """Handles the Gradio UI components and interface"""

    def __init__(
        self,
        refresh_fn: Callable,
        submit_fn: Callable,
        evaluate1_fn: Callable,
        evaluate2_fn: Callable,
        winner1_fn: Callable,
        winner2_fn: Callable,
        both_correct_fn: Callable,
        both_incorrect_fn: Callable,
        refresh_leaderboard_fn: Callable,
        leaderboard_df: pd.DataFrame,
        load_benchmark_fn: Callable = None,
    ):
        self.refresh_fn = refresh_fn
        self.submit_fn = submit_fn
        self.evaluate1_fn = evaluate1_fn
        self.evaluate2_fn = evaluate2_fn
        self.winner1_fn = winner1_fn
        self.winner2_fn = winner2_fn
        self.both_correct_fn = both_correct_fn
        self.both_incorrect_fn = both_incorrect_fn
        self.refresh_leaderboard_fn = refresh_leaderboard_fn
        self.leaderboard_df = leaderboard_df
        self.load_benchmark_fn = load_benchmark_fn

    def refresh_benchmark_types(
        self,
    ):
        try:
            new_benchmark_types = [d for d in os.listdir("benchmarks") if os.path.isdir(os.path.join("benchmarks", d))]

            logger.info(f"Refreshed benchmark types: {new_benchmark_types}")

            # Update the benchmark type dropdown
            if new_benchmark_types:
                # Return the updated dropdown and trigger dataset reload
                return gr.update(choices=new_benchmark_types, value=new_benchmark_types[0])
            else:
                return gr.update(choices=[], value=None)
        except (FileNotFoundError, PermissionError) as e:
            logger.error(f"Error refreshing benchmark types: {e}")
            return gr.update(choices=[], value=None)

    # Benchmark tab event handlers
    def get_benchmark_datasets(self, benchmark_type):
        if not benchmark_type:
            return gr.update(choices=[], value=None)

        try:
            # Find all CSV files that match the pattern <dataset>-judges-metrics.csv
            pattern = os.path.join("benchmarks", benchmark_type, "*-judges-metrics.csv")
            files = glob.glob(pattern)

            # Extract dataset names from file paths
            datasets = []
            for file in files:
                basename = os.path.basename(file)
                dataset_name = basename.replace("-judges-metrics.csv", "")
                datasets.append(dataset_name)

            logger.info(f"Found datasets for {benchmark_type}: {datasets}")

            if datasets:
                return gr.update(choices=datasets, value=datasets[0])
            else:
                return gr.update(choices=[], value=None)
        except Exception as e:
            logger.error(f"Error getting benchmark datasets: {e}")
            return gr.update(choices=[], value=None)

    def create_interface(self) -> gr.Blocks:
        """Create the Gradio interface"""
        with gr.Blocks(
            title="AI Evaluators Arena",
            theme=gr.themes.Soft(
                primary_hue=gr.themes.Color(
                    c50="#ECE9FB",
                    c100="#ECE9FB",
                    c200="#ECE9FB",
                    c300="#6B63BF",
                    c400="#494199",
                    c500="#A5183A",
                    c600="#332E68",
                    c700="#272350",
                    c800="#201E44",
                    c900="#1C1A3D",
                    c950="#100F24",
                ),
                secondary_hue=gr.themes.Color(
                    c50="#ECE9FB",
                    c100="#ECE9FB",
                    c200="#ECE9FB",
                    c300="#6B63BF",
                    c400="#494199",
                    c500="#A5183A",
                    c600="#A5183A",
                    c700="#272350",
                    c800="#201E44",
                    c900="#1C1A3D",
                    c950="#100F24",
                ),
                neutral_hue=gr.themes.Color(
                    c50="#ECE9FB",
                    c100="#ECE9FB",
                    c200="#ECE9FB",
                    c300="#6B63BF",
                    c400="#494199",
                    c500="#A5183A",
                    c600="#332E68",
                    c700="#272350",
                    c800="#201E44",
                    c900="#1C1A3D",
                    c950="#100F24",
                ),
                font=[
                    gr.themes.GoogleFont("Mulish"),
                    "Arial",
                    "sans-serif",
                ],
            ),
        ) as demo:
            gr.Markdown("# AI Evaluators Arena")
            gr.Markdown(
                "Choose which AI judge provides better evaluation of the output. "
                "This is a blind evaluation - judges' identities are hidden until after you make your selection."
            )

            with gr.Tab("🧑‍⚖️ Evaluators Arena"):
                with gr.Row():
                    with gr.Column(scale=1):
                        test_type_dropdown = gr.Dropdown(
                            choices=list(TEST_TYPES.keys()),
                            value="grounding",
                            label="Test Type",
                            info="Select the type of test to evaluate",
                        )
                        test_type_description = gr.Markdown(TEST_TYPES["grounding"])
                        refresh_button = gr.Button("Load from a dataset")

                # Create different input layouts based on test type
                with gr.Row():
                    with gr.Column(scale=2):
                        # Default grounding inputs
                        text_input = gr.Textbox(label="Text", lines=4, visible=True)
                        claim_input = gr.Textbox(label="Claim", lines=2, visible=True)

                        # Policy inputs
                        policy_input = gr.Textbox(label="Input", lines=3, visible=False)
                        policy_output = gr.Textbox(label="Output", lines=4, visible=False)
                        policy_assertion = gr.Textbox(label="Assertion", lines=2, visible=False)

                        # Prompt injection and safety input
                        single_text_input = gr.Textbox(label="Text", lines=6, visible=False)

                        # Legacy inputs (keeping for compatibility)
                        input_text = gr.Textbox(label="Input", lines=4, visible=False)
                        output_text = gr.Textbox(label="Output", lines=6, visible=False)

                        submit_button = gr.Button("Evaluate")
                        status_message = gr.Markdown(visible=False)

                with gr.Row():
                    with gr.Column():
                        evaluation1 = gr.Textbox(label="Anonymous Evaluation 1", lines=10)
                        select_eval1 = gr.Button("Select Evaluation 1", visible=False)

                    with gr.Column():
                        evaluation2 = gr.Textbox(label="Anonymous Evaluation 2", lines=10)
                        select_eval2 = gr.Button("Select Evaluation 2", visible=False)

                with gr.Row(visible=False) as additional_buttons_row:
                    with gr.Column():
                        both_correct_btn = gr.Button("Both Correct", variant="secondary")
                    with gr.Column():
                        both_incorrect_btn = gr.Button("Both Incorrect", variant="secondary")

                result_text = gr.Textbox(label="Result", lines=6)

            with gr.Tab("🏆 Leaderboard"):
                leaderboard_dataframe = gr.DataFrame(
                    value=self.leaderboard_df,
                    headers=["Judge Name", "ELO Score", "Wins", "Losses", "Total Evaluations"],
                    datatype=["str", "number", "number", "number", "number"],
                    col_count=(5, "fixed"),
                    interactive=False,
                )
                refresh_leaderboard = gr.Button("Refresh Leaderboard")

            # New Benchmarks Tab
            with gr.Tab("📊 Benchmarks"):
                types = self.refresh_benchmark_types()
                for t in types:
                    self.get_benchmark_datasets(t)

                with gr.Row():
                    with gr.Column(scale=1):
                        # Get available test types from the benchmarks directory
                        try:
                            benchmark_types = [
                                d for d in os.listdir("benchmarks") if os.path.isdir(os.path.join("benchmarks", d))
                            ]
                        except (FileNotFoundError, PermissionError):
                            # Fallback if directory can't be read
                            benchmark_types = []
                            logger.error("Failed to read benchmarks directory")

                        benchmark_type_dropdown = gr.Dropdown(
                            choices=benchmark_types,
                            label="Benchmark Type",
                            info="Select the type of benchmark to view",
                            value=benchmark_types[0] if benchmark_types else None,
                        )

                with gr.Row():
                    with gr.Column():
                        # Get available benchmark datasets for the selected type
                        benchmark_dataset_dropdown = gr.Dropdown(
                            label="Benchmark Dataset",
                            info="Select the benchmark dataset to view",
                        )

                with gr.Row():
                    with gr.Column():
                        benchmark_dataframe = gr.DataFrame(
                            headers=[
                                "Judge Name",
                                "F1 Score",
                                "Balanced Accuracy",
                                "Avg Latency (s)",
                                "Correct",
                                "Total",
                            ],
                            label="Benchmark Results",
                            interactive=False,
                        )

                        benchmark_info = gr.Markdown("Select a benchmark dataset to view results")

                        # Add a refresh button
                        refresh_benchmarks_btn = gr.Button("Refresh Benchmark List")

            with gr.Tab("About"):
                self._create_about_tab()

            # Set up event handlers
            refresh_button.click(
                self.refresh_fn,
                [test_type_dropdown],
                [
                    input_text,
                    output_text,
                    text_input,
                    claim_input,
                    single_text_input,
                    policy_input,
                    policy_output,
                    policy_assertion,
                ],
            )

            # Update UI based on test type selection
            test_type_dropdown.change(
                self._update_input_visibility,
                [test_type_dropdown],
                [
                    text_input,
                    claim_input,
                    single_text_input,
                    policy_input,
                    policy_output,
                    policy_assertion,
                    input_text,
                    output_text,
                ],
            )

            # Add handler to update the test type description
            test_type_dropdown.change(
                lambda test_type: TEST_TYPES[test_type],
                [test_type_dropdown],
                [test_type_description],
            )

            # Modified submit to prepare for evaluation and trigger both evaluations in parallel
            submit_event = submit_button.click(
                self.submit_fn,
                [
                    text_input,
                    claim_input,
                    single_text_input,
                    policy_input,
                    policy_output,
                    policy_assertion,
                    test_type_dropdown,
                ],
                [
                    evaluation1,
                    evaluation2,
                    text_input,
                    claim_input,
                    single_text_input,
                    policy_input,
                    policy_output,
                    policy_assertion,
                    test_type_dropdown,
                    status_message,
                ],
            )

            # Start both evaluations simultaneously (in parallel) after submit completes
            submit_event.then(
                self.evaluate1_fn,
                [
                    text_input,
                    claim_input,
                    single_text_input,
                    policy_input,
                    policy_output,
                    policy_assertion,
                    test_type_dropdown,
                ],
                [evaluation1, select_eval1],
                queue=False,  # Run immediately without waiting in queue
            )

            submit_event.then(
                self.evaluate2_fn,
                [
                    text_input,
                    claim_input,
                    single_text_input,
                    policy_input,
                    policy_output,
                    policy_assertion,
                    test_type_dropdown,
                ],
                [evaluation2, select_eval2, additional_buttons_row],
                queue=False,  # Run immediately without waiting in queue
            )

            # Show result buttons after both evaluations are done
            select_eval1.click(
                self.winner1_fn,
                [],
                [result_text],
            )

            select_eval2.click(
                self.winner2_fn,
                [],
                [result_text],
            )

            both_correct_btn.click(
                self.both_correct_fn,
                [],
                [result_text],
            )

            both_incorrect_btn.click(
                self.both_incorrect_fn,
                [],
                [result_text],
            )

            refresh_leaderboard.click(
                self.refresh_leaderboard_fn,
                [],
                [leaderboard_dataframe],
            )

            # Set up event handlers for the benchmark tab
            benchmark_type_dropdown.change(
                self.get_benchmark_datasets,
                [benchmark_type_dropdown],
                [benchmark_dataset_dropdown],
            )

            # Add refresh button handler
            refresh_benchmarks_btn.click(
                self.refresh_benchmark_types,
                [],
                [benchmark_type_dropdown],
            ).then(  # Chain the dataset dropdown update after the type is refreshed
                self.get_benchmark_datasets,
                [benchmark_type_dropdown],
                [benchmark_dataset_dropdown],
            )

            # Add handler to load benchmark data when dataset is selected
            if self.load_benchmark_fn:
                benchmark_dataset_dropdown.change(
                    self.load_benchmark_fn,
                    [benchmark_type_dropdown, benchmark_dataset_dropdown],
                    [benchmark_dataframe, benchmark_info],
                )

            # Load initial datasets for the default benchmark type if it exists
            if benchmark_types:
                initial_benchmark_type = benchmark_types[0]
                logger.info(f"Loading initial datasets for benchmark type: {initial_benchmark_type}")
                benchmark_type_dropdown.value = initial_benchmark_type

            # Add footer
            with gr.Row():
                gr.HTML(
                    """
                    <div style="text-align:center; margin-top:20px; padding:10px;">
                        made with ❤️ by <a href="https://qualifire.ai" target="_blank">Qualifire</a>
                    </div>
                    """
                )

            return demo

    def _create_about_tab(self) -> None:
        """Create the About tab content"""
        gr.Markdown(
            """
            # About AI Evaluators Arena

            This platform allows you to evaluate and compare different AI judges in their ability to assess various types of content.

            ## How it works
            1. Choose a test type from the dropdown
            2. Fill in the input fields or load a random example from our dataset
            3. Click "Evaluate" to get assessments from two randomly selected judges
            4. Choose which evaluation you think is better
            5. See which judge provided each evaluation

            ## Test Types
            - **Grounding**: Evaluate if a claim is grounded in a given text
            - **Prompt Injections**: Detect attempts to manipulate or jailbreak the model
            - **Safety**: Identify harmful, offensive, or dangerous content
            - **Policy**: Determine if output complies with a given policy

            ## Leaderboard
            The leaderboard tracks judge performance using an ELO rating system, with scores adjusted based on human preferences.
            """
        )

    def _update_input_visibility(self, test_type):
        """Update which input fields are visible based on the selected test type"""
        if test_type == "grounding":
            return [
                gr.update(visible=True),  # text_input
                gr.update(visible=True),  # claim_input
                gr.update(visible=False),  # single_text_input
                gr.update(visible=False),  # policy_input
                gr.update(visible=False),  # policy_output
                gr.update(visible=False),  # policy_assertion
                gr.update(visible=False),  # input_text
                gr.update(visible=False),  # output_text
            ]
        elif test_type in ["prompt_injections", "safety"]:
            return [
                gr.update(visible=False),  # text_input
                gr.update(visible=False),  # claim_input
                gr.update(visible=True),  # single_text_input
                gr.update(visible=False),  # policy_input
                gr.update(visible=False),  # policy_output
                gr.update(visible=False),  # policy_assertion
                gr.update(visible=False),  # input_text
                gr.update(visible=False),  # output_text
            ]
        elif test_type == "policy":
            return [
                gr.update(visible=False),  # text_input
                gr.update(visible=False),  # claim_input
                gr.update(visible=False),  # single_text_input
                gr.update(visible=True),  # policy_input
                gr.update(visible=True),  # policy_output
                gr.update(visible=True),  # policy_assertion
                gr.update(visible=False),  # input_text
                gr.update(visible=False),  # output_text
            ]
        else:
            # Legacy fallback
            return [
                gr.update(visible=False),  # text_input
                gr.update(visible=False),  # claim_input
                gr.update(visible=False),  # single_text_input
                gr.update(visible=False),  # policy_input
                gr.update(visible=False),  # policy_output
                gr.update(visible=False),  # policy_assertion
                gr.update(visible=True),  # input_text
                gr.update(visible=True),  # output_text
            ]