Spaces:
Paused
Paused
Update app_quant.py
Browse files- app_quant.py +46 -49
app_quant.py
CHANGED
|
@@ -3,10 +3,9 @@ import spaces
|
|
| 3 |
import gradio as gr
|
| 4 |
import sys
|
| 5 |
import platform
|
| 6 |
-
import os
|
| 7 |
import diffusers
|
| 8 |
import transformers
|
| 9 |
-
|
| 10 |
|
| 11 |
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 12 |
from diffusers import ZImagePipeline, AutoModel
|
|
@@ -16,7 +15,6 @@ from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
|
| 16 |
# LOGGING BUFFER
|
| 17 |
# ============================================================
|
| 18 |
LOGS = ""
|
| 19 |
-
|
| 20 |
def log(msg):
|
| 21 |
global LOGS
|
| 22 |
print(msg)
|
|
@@ -27,7 +25,7 @@ def log(msg):
|
|
| 27 |
# ENVIRONMENT INFO
|
| 28 |
# ============================================================
|
| 29 |
log("===================================================")
|
| 30 |
-
log("π Z-IMAGE-TURBO DEBUGGING +
|
| 31 |
log("===================================================\n")
|
| 32 |
|
| 33 |
log(f"π PYTHON VERSION : {sys.version.replace(chr(10), ' ')}")
|
|
@@ -35,7 +33,6 @@ log(f"π PLATFORM : {platform.platform()}")
|
|
| 35 |
log(f"π TORCH VERSION : {torch.__version__}")
|
| 36 |
log(f"π TRANSFORMERS VERSION : {transformers.__version__}")
|
| 37 |
log(f"π DIFFUSERS VERSION : {diffusers.__version__}")
|
| 38 |
-
|
| 39 |
log(f"π CUDA AVAILABLE : {torch.cuda.is_available()}")
|
| 40 |
|
| 41 |
if torch.cuda.is_available():
|
|
@@ -65,6 +62,45 @@ log(f"Model Cache Directory : {model_cache}")
|
|
| 65 |
log(f"torch_dtype : {torch_dtype}")
|
| 66 |
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
# ============================================================
|
| 69 |
# LOAD TRANSFORMER BLOCK
|
| 70 |
# ============================================================
|
|
@@ -75,11 +111,10 @@ log("===================================================")
|
|
| 75 |
quantization_config = DiffusersBitsAndBytesConfig(
|
| 76 |
load_in_4bit=True,
|
| 77 |
bnb_4bit_quant_type="nf4",
|
| 78 |
-
bnb_4bit_compute_dtype=
|
| 79 |
bnb_4bit_use_double_quant=True,
|
| 80 |
llm_int8_skip_modules=["transformer_blocks.0.img_mod"],
|
| 81 |
)
|
| 82 |
-
|
| 83 |
log("4-bit Quantization Config (Transformer):")
|
| 84 |
log(str(quantization_config))
|
| 85 |
|
|
@@ -92,25 +127,7 @@ transformer = AutoModel.from_pretrained(
|
|
| 92 |
device_map=device,
|
| 93 |
)
|
| 94 |
log("β
Transformer block loaded successfully.")
|
| 95 |
-
|
| 96 |
-
# ------------------------------------------------------------
|
| 97 |
-
# TRANSFORMER INSIGHTS
|
| 98 |
-
# ------------------------------------------------------------
|
| 99 |
-
log("π Transformer Architecture Details:")
|
| 100 |
-
log(f"Number of Transformer Modules : {len(transformer.transformer_blocks)}")
|
| 101 |
-
for i, block in enumerate(transformer.transformer_blocks):
|
| 102 |
-
log(f" Block {i}: {block.__class__.__name__}")
|
| 103 |
-
# Log attention type if possible
|
| 104 |
-
attn_type = getattr(block, "attn", None)
|
| 105 |
-
if attn_type:
|
| 106 |
-
log(f" Attention: {attn_type.__class__.__name__}")
|
| 107 |
-
# Check for FlashAttention usage if attribute exists
|
| 108 |
-
flash_enabled = getattr(attn_type, "flash", None)
|
| 109 |
-
log(f" FlashAttention Enabled? : {flash_enabled}")
|
| 110 |
-
log(f"Hidden size: {transformer.config.hidden_size}")
|
| 111 |
-
log(f"Number of attention heads: {transformer.config.num_attention_heads}")
|
| 112 |
-
log(f"Number of layers: {transformer.config.num_hidden_layers}")
|
| 113 |
-
log(f"Intermediate size: {transformer.config.intermediate_size}")
|
| 114 |
|
| 115 |
if USE_CPU_OFFLOAD:
|
| 116 |
transformer = transformer.to("cpu")
|
|
@@ -125,10 +142,9 @@ log("===================================================")
|
|
| 125 |
quantization_config = TransformersBitsAndBytesConfig(
|
| 126 |
load_in_4bit=True,
|
| 127 |
bnb_4bit_quant_type="nf4",
|
| 128 |
-
bnb_4bit_compute_dtype=
|
| 129 |
bnb_4bit_use_double_quant=True,
|
| 130 |
)
|
| 131 |
-
|
| 132 |
log("4-bit Quantization Config (Text Encoder):")
|
| 133 |
log(str(quantization_config))
|
| 134 |
|
|
@@ -141,23 +157,7 @@ text_encoder = AutoModel.from_pretrained(
|
|
| 141 |
device_map=device,
|
| 142 |
)
|
| 143 |
log("β
Text encoder loaded successfully.")
|
| 144 |
-
|
| 145 |
-
# ------------------------------------------------------------
|
| 146 |
-
# TEXT ENCODER INSIGHTS
|
| 147 |
-
# ------------------------------------------------------------
|
| 148 |
-
log("π Text Encoder Architecture Details:")
|
| 149 |
-
log(f"Number of Transformer Modules : {len(text_encoder.transformer_blocks)}")
|
| 150 |
-
for i, block in enumerate(text_encoder.transformer_blocks):
|
| 151 |
-
log(f" Block {i}: {block.__class__.__name__}")
|
| 152 |
-
attn_type = getattr(block, "attn", None)
|
| 153 |
-
if attn_type:
|
| 154 |
-
log(f" Attention: {attn_type.__class__.__name__}")
|
| 155 |
-
flash_enabled = getattr(attn_type, "flash", None)
|
| 156 |
-
log(f" FlashAttention Enabled? : {flash_enabled}")
|
| 157 |
-
log(f"Hidden size: {text_encoder.config.hidden_size}")
|
| 158 |
-
log(f"Number of attention heads: {text_encoder.config.num_attention_heads}")
|
| 159 |
-
log(f"Number of layers: {text_encoder.config.num_hidden_layers}")
|
| 160 |
-
log(f"Intermediate size: {text_encoder.config.intermediate_size}")
|
| 161 |
|
| 162 |
if USE_CPU_OFFLOAD:
|
| 163 |
text_encoder = text_encoder.to("cpu")
|
|
@@ -191,12 +191,10 @@ log("β
Pipeline ready.")
|
|
| 191 |
@spaces.GPU
|
| 192 |
def generate_image(prompt, height, width, steps, seed):
|
| 193 |
global LOGS
|
| 194 |
-
LOGS = "" #
|
| 195 |
-
|
| 196 |
log("===================================================")
|
| 197 |
log("π¨ RUNNING INFERENCE")
|
| 198 |
log("===================================================")
|
| 199 |
-
|
| 200 |
log(f"Prompt : {prompt}")
|
| 201 |
log(f"Resolution : {width} x {height}")
|
| 202 |
log(f"Steps : {steps}")
|
|
@@ -212,7 +210,6 @@ def generate_image(prompt, height, width, steps, seed):
|
|
| 212 |
guidance_scale=0.0,
|
| 213 |
generator=generator,
|
| 214 |
)
|
| 215 |
-
|
| 216 |
log("β
Inference Finished")
|
| 217 |
return out.images[0], LOGS
|
| 218 |
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import sys
|
| 5 |
import platform
|
|
|
|
| 6 |
import diffusers
|
| 7 |
import transformers
|
| 8 |
+
import os
|
| 9 |
|
| 10 |
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 11 |
from diffusers import ZImagePipeline, AutoModel
|
|
|
|
| 15 |
# LOGGING BUFFER
|
| 16 |
# ============================================================
|
| 17 |
LOGS = ""
|
|
|
|
| 18 |
def log(msg):
|
| 19 |
global LOGS
|
| 20 |
print(msg)
|
|
|
|
| 25 |
# ENVIRONMENT INFO
|
| 26 |
# ============================================================
|
| 27 |
log("===================================================")
|
| 28 |
+
log("π Z-IMAGE-TURBO DEBUGGING + ROBUST TRANSFORMER INSPECTION")
|
| 29 |
log("===================================================\n")
|
| 30 |
|
| 31 |
log(f"π PYTHON VERSION : {sys.version.replace(chr(10), ' ')}")
|
|
|
|
| 33 |
log(f"π TORCH VERSION : {torch.__version__}")
|
| 34 |
log(f"π TRANSFORMERS VERSION : {transformers.__version__}")
|
| 35 |
log(f"π DIFFUSERS VERSION : {diffusers.__version__}")
|
|
|
|
| 36 |
log(f"π CUDA AVAILABLE : {torch.cuda.is_available()}")
|
| 37 |
|
| 38 |
if torch.cuda.is_available():
|
|
|
|
| 62 |
log(f"torch_dtype : {torch_dtype}")
|
| 63 |
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
|
| 64 |
|
| 65 |
+
# ============================================================
|
| 66 |
+
# ROBUST TRANSFORMER INSPECTION FUNCTION
|
| 67 |
+
# ============================================================
|
| 68 |
+
def inspect_transformer(model, model_name="Transformer"):
|
| 69 |
+
log(f"\nπ {model_name} Architecture Details:")
|
| 70 |
+
try:
|
| 71 |
+
block_attrs = ["transformer_blocks", "blocks", "layers", "encoder_blocks", "model"]
|
| 72 |
+
blocks = None
|
| 73 |
+
for attr in block_attrs:
|
| 74 |
+
blocks = getattr(model, attr, None)
|
| 75 |
+
if blocks is not None:
|
| 76 |
+
break
|
| 77 |
+
|
| 78 |
+
if blocks is None:
|
| 79 |
+
log(f"β οΈ Could not find transformer blocks in {model_name}, skipping detailed block info")
|
| 80 |
+
else:
|
| 81 |
+
try:
|
| 82 |
+
log(f"Number of Transformer Modules : {len(blocks)}")
|
| 83 |
+
for i, block in enumerate(blocks):
|
| 84 |
+
log(f" Block {i}: {block.__class__.__name__}")
|
| 85 |
+
attn_type = getattr(block, "attn", None)
|
| 86 |
+
if attn_type:
|
| 87 |
+
log(f" Attention: {attn_type.__class__.__name__}")
|
| 88 |
+
flash_enabled = getattr(attn_type, "flash", None)
|
| 89 |
+
log(f" FlashAttention Enabled? : {flash_enabled}")
|
| 90 |
+
except Exception as e:
|
| 91 |
+
log(f"β οΈ Error inspecting blocks: {e}")
|
| 92 |
+
|
| 93 |
+
config = getattr(model, "config", None)
|
| 94 |
+
if config:
|
| 95 |
+
log(f"Hidden size: {getattr(config, 'hidden_size', 'N/A')}")
|
| 96 |
+
log(f"Number of attention heads: {getattr(config, 'num_attention_heads', 'N/A')}")
|
| 97 |
+
log(f"Number of layers: {getattr(config, 'num_hidden_layers', 'N/A')}")
|
| 98 |
+
log(f"Intermediate size: {getattr(config, 'intermediate_size', 'N/A')}")
|
| 99 |
+
else:
|
| 100 |
+
log(f"β οΈ No config attribute found in {model_name}")
|
| 101 |
+
except Exception as e:
|
| 102 |
+
log(f"β οΈ Failed to inspect {model_name}: {e}")
|
| 103 |
+
|
| 104 |
# ============================================================
|
| 105 |
# LOAD TRANSFORMER BLOCK
|
| 106 |
# ============================================================
|
|
|
|
| 111 |
quantization_config = DiffusersBitsAndBytesConfig(
|
| 112 |
load_in_4bit=True,
|
| 113 |
bnb_4bit_quant_type="nf4",
|
| 114 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
| 115 |
bnb_4bit_use_double_quant=True,
|
| 116 |
llm_int8_skip_modules=["transformer_blocks.0.img_mod"],
|
| 117 |
)
|
|
|
|
| 118 |
log("4-bit Quantization Config (Transformer):")
|
| 119 |
log(str(quantization_config))
|
| 120 |
|
|
|
|
| 127 |
device_map=device,
|
| 128 |
)
|
| 129 |
log("β
Transformer block loaded successfully.")
|
| 130 |
+
inspect_transformer(transformer, "Transformer")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
if USE_CPU_OFFLOAD:
|
| 133 |
transformer = transformer.to("cpu")
|
|
|
|
| 142 |
quantization_config = TransformersBitsAndBytesConfig(
|
| 143 |
load_in_4bit=True,
|
| 144 |
bnb_4bit_quant_type="nf4",
|
| 145 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
| 146 |
bnb_4bit_use_double_quant=True,
|
| 147 |
)
|
|
|
|
| 148 |
log("4-bit Quantization Config (Text Encoder):")
|
| 149 |
log(str(quantization_config))
|
| 150 |
|
|
|
|
| 157 |
device_map=device,
|
| 158 |
)
|
| 159 |
log("β
Text encoder loaded successfully.")
|
| 160 |
+
inspect_transformer(text_encoder, "Text Encoder")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
if USE_CPU_OFFLOAD:
|
| 163 |
text_encoder = text_encoder.to("cpu")
|
|
|
|
| 191 |
@spaces.GPU
|
| 192 |
def generate_image(prompt, height, width, steps, seed):
|
| 193 |
global LOGS
|
| 194 |
+
LOGS = "" # reset logs
|
|
|
|
| 195 |
log("===================================================")
|
| 196 |
log("π¨ RUNNING INFERENCE")
|
| 197 |
log("===================================================")
|
|
|
|
| 198 |
log(f"Prompt : {prompt}")
|
| 199 |
log(f"Resolution : {width} x {height}")
|
| 200 |
log(f"Steps : {steps}")
|
|
|
|
| 210 |
guidance_scale=0.0,
|
| 211 |
generator=generator,
|
| 212 |
)
|
|
|
|
| 213 |
log("β
Inference Finished")
|
| 214 |
return out.images[0], LOGS
|
| 215 |
|