Spaces:
Running
on
Zero
Running
on
Zero
Update app_exp.py
Browse files- app_exp.py +129 -124
app_exp.py
CHANGED
|
@@ -5,53 +5,46 @@ import sys
|
|
| 5 |
import subprocess
|
| 6 |
import tempfile
|
| 7 |
import numpy as np
|
| 8 |
-
import spaces
|
| 9 |
-
import importlib
|
| 10 |
import site
|
|
|
|
| 11 |
from PIL import Image
|
| 12 |
from huggingface_hub import snapshot_download, hf_hub_download
|
| 13 |
|
| 14 |
# ============================================================
|
| 15 |
-
#
|
| 16 |
# ============================================================
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# ============================================================
|
| 33 |
-
#
|
| 34 |
# ============================================================
|
| 35 |
REPO_PATH = "LongCat-Video"
|
| 36 |
CHECKPOINT_DIR = os.path.join(REPO_PATH, "weights", "LongCat-Video")
|
| 37 |
|
| 38 |
-
# ============================================================
|
| 39 |
-
# 3️⃣ Clone the model repo if needed
|
| 40 |
-
# ============================================================
|
| 41 |
if not os.path.exists(REPO_PATH):
|
| 42 |
print(f"Cloning LongCat-Video repository to '{REPO_PATH}'...")
|
| 43 |
subprocess.run(
|
| 44 |
["git", "clone", "https://github.com/meituan-longcat/LongCat-Video.git", REPO_PATH],
|
| 45 |
check=True
|
| 46 |
)
|
| 47 |
-
print("✅ Repository cloned successfully.")
|
| 48 |
|
| 49 |
-
# Make repo importable
|
| 50 |
sys.path.insert(0, os.path.abspath(REPO_PATH))
|
| 51 |
|
| 52 |
-
# ============================================================
|
| 53 |
-
# 4️⃣ Import model modules after repo setup
|
| 54 |
-
# ============================================================
|
| 55 |
from longcat_video.pipeline_longcat_video import LongCatVideoPipeline
|
| 56 |
from longcat_video.modules.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
| 57 |
from longcat_video.modules.autoencoder_kl_wan import AutoencoderKLWan
|
|
@@ -60,9 +53,7 @@ from longcat_video.context_parallel import context_parallel_util
|
|
| 60 |
from transformers import AutoTokenizer, UMT5EncoderModel
|
| 61 |
from diffusers.utils import export_to_video
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
# 5️⃣ Download weights (snapshot)
|
| 65 |
-
# ============================================================
|
| 66 |
if not os.path.exists(CHECKPOINT_DIR):
|
| 67 |
print(f"Downloading model weights to '{CHECKPOINT_DIR}'...")
|
| 68 |
snapshot_download(
|
|
@@ -71,33 +62,33 @@ if not os.path.exists(CHECKPOINT_DIR):
|
|
| 71 |
local_dir_use_symlinks=False,
|
| 72 |
ignore_patterns=["*.md", "*.gitattributes", "assets/*"]
|
| 73 |
)
|
| 74 |
-
print("✅ Model weights ready.")
|
| 75 |
|
| 76 |
# ============================================================
|
| 77 |
-
#
|
| 78 |
# ============================================================
|
| 79 |
-
pipe = None
|
| 80 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 81 |
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
| 82 |
|
| 83 |
-
print("
|
|
|
|
|
|
|
| 84 |
try:
|
| 85 |
cp_split_hw = context_parallel_util.get_optimal_split(1)
|
| 86 |
|
| 87 |
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_DIR, subfolder="tokenizer", torch_dtype=torch_dtype)
|
| 88 |
text_encoder = UMT5EncoderModel.from_pretrained(CHECKPOINT_DIR, subfolder="text_encoder", torch_dtype=torch_dtype)
|
|
|
|
| 89 |
vae = AutoencoderKLWan.from_pretrained(CHECKPOINT_DIR, subfolder="vae", torch_dtype=torch_dtype)
|
| 90 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(CHECKPOINT_DIR, subfolder="scheduler", torch_dtype=torch_dtype)
|
| 91 |
|
| 92 |
-
# ✅ Enable FA3 acceleration
|
| 93 |
dit = LongCatVideoTransformer3DModel.from_pretrained(
|
| 94 |
CHECKPOINT_DIR,
|
| 95 |
-
enable_flashattn3=
|
| 96 |
enable_flashattn2=False,
|
| 97 |
enable_xformers=True,
|
| 98 |
subfolder="dit",
|
| 99 |
cp_split_hw=cp_split_hw,
|
| 100 |
-
torch_dtype=torch_dtype
|
| 101 |
)
|
| 102 |
|
| 103 |
pipe = LongCatVideoPipeline(
|
|
@@ -106,43 +97,27 @@ try:
|
|
| 106 |
vae=vae,
|
| 107 |
scheduler=scheduler,
|
| 108 |
dit=dit,
|
| 109 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
lora_dir = os.path.join(CHECKPOINT_DIR, "lora")
|
| 113 |
-
pipe.dit.load_lora(os.path.join(lora_dir, "cfg_step_lora.safetensors"), "cfg_step_lora")
|
| 114 |
-
pipe.dit.load_lora(os.path.join(lora_dir, "refinement_lora.safetensors"), "refinement_lora")
|
| 115 |
|
| 116 |
-
print("✅ Models loaded successfully.")
|
| 117 |
except Exception as e:
|
| 118 |
-
print(f"❌
|
| 119 |
pipe = None
|
| 120 |
|
| 121 |
# ============================================================
|
| 122 |
-
#
|
| 123 |
# ============================================================
|
| 124 |
def torch_gc():
|
| 125 |
if torch.cuda.is_available():
|
| 126 |
torch.cuda.empty_cache()
|
| 127 |
torch.cuda.ipc_collect()
|
| 128 |
|
| 129 |
-
# ============================================================
|
| 130 |
-
# 8️⃣ Dynamic GPU duration logic
|
| 131 |
-
# ============================================================
|
| 132 |
-
def compute_duration(mode, prompt, neg_prompt, image, height, width, resolution, seed, use_distill, use_refine, progress):
|
| 133 |
-
"""
|
| 134 |
-
Adaptive GPU time allocation based on resolution & refinement usage.
|
| 135 |
-
"""
|
| 136 |
-
base = 120 # baseline (seconds)
|
| 137 |
-
if resolution == "720p": base += 60
|
| 138 |
-
if use_refine: base += 60
|
| 139 |
-
if use_distill: base -= 30
|
| 140 |
-
return min(base, 240) # cap at 4 min
|
| 141 |
-
|
| 142 |
-
# ============================================================
|
| 143 |
-
# 9️⃣ Generation function
|
| 144 |
-
# ============================================================
|
| 145 |
-
@spaces.GPU(duration=compute_duration)
|
| 146 |
def generate_video(
|
| 147 |
mode,
|
| 148 |
prompt,
|
|
@@ -152,117 +127,147 @@ def generate_video(
|
|
| 152 |
seed,
|
| 153 |
use_distill,
|
| 154 |
use_refine,
|
|
|
|
| 155 |
progress=gr.Progress(track_tqdm=True)
|
| 156 |
):
|
| 157 |
if pipe is None:
|
| 158 |
-
raise gr.Error("
|
| 159 |
|
|
|
|
|
|
|
|
|
|
| 160 |
generator = torch.Generator(device=device).manual_seed(int(seed))
|
| 161 |
-
num_frames = 48 # shorter for faster test runs
|
| 162 |
-
|
| 163 |
is_distill = use_distill or use_refine
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
num_inference_steps = 12 if is_distill else 24
|
| 167 |
guidance_scale = 2.0 if is_distill else 4.0
|
|
|
|
| 168 |
|
| 169 |
-
# --- Stage 1 ---
|
| 170 |
-
progress(0.2, desc="Stage 1: Generating Base Video...")
|
| 171 |
if mode == "t2v":
|
| 172 |
output = pipe.generate_t2v(
|
| 173 |
prompt=prompt,
|
| 174 |
-
negative_prompt=
|
| 175 |
height=height,
|
| 176 |
width=width,
|
| 177 |
num_frames=num_frames,
|
| 178 |
num_inference_steps=num_inference_steps,
|
| 179 |
use_distill=is_distill,
|
| 180 |
guidance_scale=guidance_scale,
|
| 181 |
-
generator=generator
|
| 182 |
)[0]
|
| 183 |
else:
|
| 184 |
pil_img = Image.fromarray(image)
|
| 185 |
output = pipe.generate_i2v(
|
| 186 |
image=pil_img,
|
| 187 |
prompt=prompt,
|
| 188 |
-
negative_prompt=
|
| 189 |
resolution=resolution,
|
| 190 |
num_frames=num_frames,
|
| 191 |
num_inference_steps=num_inference_steps,
|
| 192 |
use_distill=is_distill,
|
| 193 |
guidance_scale=guidance_scale,
|
| 194 |
-
generator=generator
|
| 195 |
)[0]
|
| 196 |
|
| 197 |
pipe.dit.disable_all_loras()
|
| 198 |
torch_gc()
|
| 199 |
|
| 200 |
-
#
|
| 201 |
if use_refine:
|
| 202 |
-
progress(0.
|
| 203 |
-
pipe.dit.enable_loras([
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
prompt=prompt,
|
| 207 |
-
stage1_video=
|
| 208 |
-
num_cond_frames=1 if mode
|
| 209 |
-
num_inference_steps=
|
| 210 |
-
generator=generator
|
| 211 |
)[0]
|
| 212 |
-
|
| 213 |
pipe.dit.disable_all_loras()
|
|
|
|
| 214 |
torch_gc()
|
| 215 |
|
| 216 |
-
#
|
| 217 |
-
progress(1.0, desc="Exporting video
|
| 218 |
-
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as
|
| 219 |
-
export_to_video(output,
|
| 220 |
-
return
|
| 221 |
|
| 222 |
# ============================================================
|
| 223 |
-
#
|
| 224 |
# ============================================================
|
| 225 |
-
css = ".fillable{max-width:960px!important}"
|
|
|
|
| 226 |
with gr.Blocks(css=css) as demo:
|
| 227 |
-
gr.Markdown("# 🎬 LongCat-Video
|
| 228 |
-
gr.Markdown("13.6B parameter dense video model
|
| 229 |
|
| 230 |
-
with gr.Tabs():
|
| 231 |
-
# Text-to-Video
|
| 232 |
with gr.TabItem("Text-to-Video"):
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
# Image-to-Video
|
| 250 |
with gr.TabItem("Image-to-Video"):
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
if __name__ == "__main__":
|
| 268 |
demo.launch()
|
|
|
|
| 5 |
import subprocess
|
| 6 |
import tempfile
|
| 7 |
import numpy as np
|
|
|
|
|
|
|
| 8 |
import site
|
| 9 |
+
import importlib
|
| 10 |
from PIL import Image
|
| 11 |
from huggingface_hub import snapshot_download, hf_hub_download
|
| 12 |
|
| 13 |
# ============================================================
|
| 14 |
+
# 0️⃣ FlashAttention 3 Setup
|
| 15 |
# ============================================================
|
| 16 |
+
try:
|
| 17 |
+
print("Attempting to download and install FlashAttention wheel...")
|
| 18 |
+
flash_attention_wheel = hf_hub_download(
|
| 19 |
+
repo_id="rahul7star/flash-attn-3",
|
| 20 |
+
repo_type="model",
|
| 21 |
+
filename="128/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl",
|
| 22 |
+
)
|
| 23 |
+
subprocess.run(["pip", "install", flash_attention_wheel], check=True)
|
| 24 |
+
site.addsitedir(site.getsitepackages()[0])
|
| 25 |
+
importlib.invalidate_caches()
|
| 26 |
+
print("✅ FlashAttention installed successfully.")
|
| 27 |
+
enable_fa3 = True
|
| 28 |
+
except Exception as e:
|
| 29 |
+
print(f"⚠️ Could not install FlashAttention: {e}")
|
| 30 |
+
print("Continuing without FlashAttention...")
|
| 31 |
+
enable_fa3 = False
|
| 32 |
|
| 33 |
# ============================================================
|
| 34 |
+
# 1️⃣ Repository Setup
|
| 35 |
# ============================================================
|
| 36 |
REPO_PATH = "LongCat-Video"
|
| 37 |
CHECKPOINT_DIR = os.path.join(REPO_PATH, "weights", "LongCat-Video")
|
| 38 |
|
|
|
|
|
|
|
|
|
|
| 39 |
if not os.path.exists(REPO_PATH):
|
| 40 |
print(f"Cloning LongCat-Video repository to '{REPO_PATH}'...")
|
| 41 |
subprocess.run(
|
| 42 |
["git", "clone", "https://github.com/meituan-longcat/LongCat-Video.git", REPO_PATH],
|
| 43 |
check=True
|
| 44 |
)
|
|
|
|
| 45 |
|
|
|
|
| 46 |
sys.path.insert(0, os.path.abspath(REPO_PATH))
|
| 47 |
|
|
|
|
|
|
|
|
|
|
| 48 |
from longcat_video.pipeline_longcat_video import LongCatVideoPipeline
|
| 49 |
from longcat_video.modules.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
| 50 |
from longcat_video.modules.autoencoder_kl_wan import AutoencoderKLWan
|
|
|
|
| 53 |
from transformers import AutoTokenizer, UMT5EncoderModel
|
| 54 |
from diffusers.utils import export_to_video
|
| 55 |
|
| 56 |
+
# Download weights if not present
|
|
|
|
|
|
|
| 57 |
if not os.path.exists(CHECKPOINT_DIR):
|
| 58 |
print(f"Downloading model weights to '{CHECKPOINT_DIR}'...")
|
| 59 |
snapshot_download(
|
|
|
|
| 62 |
local_dir_use_symlinks=False,
|
| 63 |
ignore_patterns=["*.md", "*.gitattributes", "assets/*"]
|
| 64 |
)
|
|
|
|
| 65 |
|
| 66 |
# ============================================================
|
| 67 |
+
# 2️⃣ Device & Models
|
| 68 |
# ============================================================
|
|
|
|
| 69 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 70 |
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
| 71 |
|
| 72 |
+
print(f"Device: {device}, dtype: {torch_dtype}")
|
| 73 |
+
|
| 74 |
+
pipe = None
|
| 75 |
try:
|
| 76 |
cp_split_hw = context_parallel_util.get_optimal_split(1)
|
| 77 |
|
| 78 |
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_DIR, subfolder="tokenizer", torch_dtype=torch_dtype)
|
| 79 |
text_encoder = UMT5EncoderModel.from_pretrained(CHECKPOINT_DIR, subfolder="text_encoder", torch_dtype=torch_dtype)
|
| 80 |
+
|
| 81 |
vae = AutoencoderKLWan.from_pretrained(CHECKPOINT_DIR, subfolder="vae", torch_dtype=torch_dtype)
|
| 82 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(CHECKPOINT_DIR, subfolder="scheduler", torch_dtype=torch_dtype)
|
| 83 |
|
|
|
|
| 84 |
dit = LongCatVideoTransformer3DModel.from_pretrained(
|
| 85 |
CHECKPOINT_DIR,
|
| 86 |
+
enable_flashattn3=enable_fa3,
|
| 87 |
enable_flashattn2=False,
|
| 88 |
enable_xformers=True,
|
| 89 |
subfolder="dit",
|
| 90 |
cp_split_hw=cp_split_hw,
|
| 91 |
+
torch_dtype=torch_dtype
|
| 92 |
)
|
| 93 |
|
| 94 |
pipe = LongCatVideoPipeline(
|
|
|
|
| 97 |
vae=vae,
|
| 98 |
scheduler=scheduler,
|
| 99 |
dit=dit,
|
| 100 |
+
)
|
| 101 |
+
pipe.to(device)
|
| 102 |
+
|
| 103 |
+
# Load LoRA weights
|
| 104 |
+
pipe.dit.load_lora(os.path.join(CHECKPOINT_DIR, 'lora/cfg_step_lora.safetensors'), 'cfg_step_lora')
|
| 105 |
+
pipe.dit.load_lora(os.path.join(CHECKPOINT_DIR, 'lora/refinement_lora.safetensors'), 'refinement_lora')
|
| 106 |
|
| 107 |
+
print("✅ Models loaded successfully")
|
|
|
|
|
|
|
|
|
|
| 108 |
|
|
|
|
| 109 |
except Exception as e:
|
| 110 |
+
print(f"❌ Failed to load models: {e}")
|
| 111 |
pipe = None
|
| 112 |
|
| 113 |
# ============================================================
|
| 114 |
+
# 3️⃣ Generation Helpers
|
| 115 |
# ============================================================
|
| 116 |
def torch_gc():
|
| 117 |
if torch.cuda.is_available():
|
| 118 |
torch.cuda.empty_cache()
|
| 119 |
torch.cuda.ipc_collect()
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
def generate_video(
|
| 122 |
mode,
|
| 123 |
prompt,
|
|
|
|
| 127 |
seed,
|
| 128 |
use_distill,
|
| 129 |
use_refine,
|
| 130 |
+
duration_sec,
|
| 131 |
progress=gr.Progress(track_tqdm=True)
|
| 132 |
):
|
| 133 |
if pipe is None:
|
| 134 |
+
raise gr.Error("❌ Models failed to load")
|
| 135 |
|
| 136 |
+
# Adaptive FPS for faster testing
|
| 137 |
+
fps = 15 if use_distill else 30
|
| 138 |
+
num_frames = int(duration_sec * fps)
|
| 139 |
generator = torch.Generator(device=device).manual_seed(int(seed))
|
|
|
|
|
|
|
| 140 |
is_distill = use_distill or use_refine
|
| 141 |
+
|
| 142 |
+
# Stage 1
|
| 143 |
+
progress(0.2, desc="Stage 1: Base Video Generation")
|
| 144 |
+
pipe.dit.enable_loras(['cfg_step_lora'] if is_distill else [])
|
| 145 |
|
| 146 |
num_inference_steps = 12 if is_distill else 24
|
| 147 |
guidance_scale = 2.0 if is_distill else 4.0
|
| 148 |
+
curr_neg_prompt = "" if is_distill else neg_prompt
|
| 149 |
|
|
|
|
|
|
|
| 150 |
if mode == "t2v":
|
| 151 |
output = pipe.generate_t2v(
|
| 152 |
prompt=prompt,
|
| 153 |
+
negative_prompt=curr_neg_prompt,
|
| 154 |
height=height,
|
| 155 |
width=width,
|
| 156 |
num_frames=num_frames,
|
| 157 |
num_inference_steps=num_inference_steps,
|
| 158 |
use_distill=is_distill,
|
| 159 |
guidance_scale=guidance_scale,
|
| 160 |
+
generator=generator
|
| 161 |
)[0]
|
| 162 |
else:
|
| 163 |
pil_img = Image.fromarray(image)
|
| 164 |
output = pipe.generate_i2v(
|
| 165 |
image=pil_img,
|
| 166 |
prompt=prompt,
|
| 167 |
+
negative_prompt=curr_neg_prompt,
|
| 168 |
resolution=resolution,
|
| 169 |
num_frames=num_frames,
|
| 170 |
num_inference_steps=num_inference_steps,
|
| 171 |
use_distill=is_distill,
|
| 172 |
guidance_scale=guidance_scale,
|
| 173 |
+
generator=generator
|
| 174 |
)[0]
|
| 175 |
|
| 176 |
pipe.dit.disable_all_loras()
|
| 177 |
torch_gc()
|
| 178 |
|
| 179 |
+
# Stage 2: Optional refinement
|
| 180 |
if use_refine:
|
| 181 |
+
progress(0.5, desc="Stage 2: Refinement")
|
| 182 |
+
pipe.dit.enable_loras(['refinement_lora'])
|
| 183 |
+
pipe.dit.enable_bsa()
|
| 184 |
+
|
| 185 |
+
stage1_video_pil = [(frame * 255).astype(np.uint8) for frame in output]
|
| 186 |
+
stage1_video_pil = [Image.fromarray(img) for img in stage1_video_pil]
|
| 187 |
+
refine_image = Image.fromarray(image) if mode == 'i2v' else None
|
| 188 |
+
|
| 189 |
+
output = pipe.generate_refine(
|
| 190 |
+
image=refine_image,
|
| 191 |
prompt=prompt,
|
| 192 |
+
stage1_video=stage1_video_pil,
|
| 193 |
+
num_cond_frames=1 if mode=='i2v' else 0,
|
| 194 |
+
num_inference_steps=50,
|
| 195 |
+
generator=generator
|
| 196 |
)[0]
|
| 197 |
+
|
| 198 |
pipe.dit.disable_all_loras()
|
| 199 |
+
pipe.dit.disable_bsa()
|
| 200 |
torch_gc()
|
| 201 |
|
| 202 |
+
# Export video
|
| 203 |
+
progress(1.0, desc="Exporting video")
|
| 204 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video_file:
|
| 205 |
+
export_to_video(output, temp_video_file.name, fps=fps)
|
| 206 |
+
return temp_video_file.name
|
| 207 |
|
| 208 |
# ============================================================
|
| 209 |
+
# 4️⃣ Gradio UI
|
| 210 |
# ============================================================
|
| 211 |
+
css = ".fillable{max-width: 960px !important}"
|
| 212 |
+
|
| 213 |
with gr.Blocks(css=css) as demo:
|
| 214 |
+
gr.Markdown("# 🎬 LongCat-Video")
|
| 215 |
+
gr.Markdown("13.6B parameter dense video-generation model by Meituan — [[Model](https://huggingface.co/meituan-longcat/LongCat-Video)]")
|
| 216 |
|
| 217 |
+
with gr.Tabs() as tabs:
|
|
|
|
| 218 |
with gr.TabItem("Text-to-Video"):
|
| 219 |
+
mode_t2v = gr.State("t2v")
|
| 220 |
+
with gr.Row():
|
| 221 |
+
with gr.Column(scale=2):
|
| 222 |
+
prompt_t2v = gr.Textbox(label="Prompt", lines=4)
|
| 223 |
+
neg_prompt_t2v = gr.Textbox(label="Negative Prompt", lines=2, value="blurry, low quality")
|
| 224 |
+
height_t2v = gr.Slider(256, 1024, step=64, value=480, label="Height")
|
| 225 |
+
width_t2v = gr.Slider(256, 1024, step=64, value=832, label="Width")
|
| 226 |
+
seed_t2v = gr.Number(value=42, label="Seed")
|
| 227 |
+
distill_t2v = gr.Checkbox(value=True, label="Use Distill Mode")
|
| 228 |
+
refine_t2v = gr.Checkbox(value=False, label="Use Refine Mode")
|
| 229 |
+
duration_t2v = gr.Slider(1, 20, step=1, value=2, label="Video Duration (seconds)")
|
| 230 |
+
|
| 231 |
+
t2v_button = gr.Button("Generate Video")
|
| 232 |
+
with gr.Column(scale=3):
|
| 233 |
+
video_output_t2v = gr.Video(label="Generated Video")
|
| 234 |
+
|
|
|
|
| 235 |
with gr.TabItem("Image-to-Video"):
|
| 236 |
+
mode_i2v = gr.State("i2v")
|
| 237 |
+
with gr.Row():
|
| 238 |
+
with gr.Column(scale=2):
|
| 239 |
+
image_i2v = gr.Image(type="numpy", label="Input Image")
|
| 240 |
+
prompt_i2v = gr.Textbox(label="Prompt", lines=4)
|
| 241 |
+
neg_prompt_i2v = gr.Textbox(label="Negative Prompt", lines=2, value="blurry, low quality")
|
| 242 |
+
resolution_i2v = gr.Dropdown(["480p","720p"], value="480p", label="Resolution")
|
| 243 |
+
seed_i2v = gr.Number(value=42, label="Seed")
|
| 244 |
+
distill_i2v = gr.Checkbox(value=True, label="Use Distill Mode")
|
| 245 |
+
refine_i2v = gr.Checkbox(value=False, label="Use Refine Mode")
|
| 246 |
+
duration_i2v = gr.Slider(1, 20, step=1, value=2, label="Video Duration (seconds)")
|
| 247 |
+
|
| 248 |
+
i2v_button = gr.Button("Generate Video")
|
| 249 |
+
with gr.Column(scale=3):
|
| 250 |
+
video_output_i2v = gr.Video(label="Generated Video")
|
| 251 |
+
|
| 252 |
+
# Event binding
|
| 253 |
+
t2v_button.click(
|
| 254 |
+
generate_video,
|
| 255 |
+
inputs=[mode_t2v, prompt_t2v, neg_prompt_t2v, gr.State(None),
|
| 256 |
+
height_t2v, width_t2v, gr.State("480p"),
|
| 257 |
+
seed_t2v, distill_t2v, refine_t2v, duration_t2v],
|
| 258 |
+
outputs=video_output_t2v
|
| 259 |
+
)
|
| 260 |
|
| 261 |
+
i2v_button.click(
|
| 262 |
+
generate_video,
|
| 263 |
+
inputs=[mode_i2v, prompt_i2v, neg_prompt_i2v, image_i2v,
|
| 264 |
+
gr.State(None), gr.State(None), resolution_i2v,
|
| 265 |
+
seed_i2v, distill_i2v, refine_i2v, duration_i2v],
|
| 266 |
+
outputs=video_output_i2v
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
# ============================================================
|
| 270 |
+
# 5️⃣ Launch
|
| 271 |
+
# ============================================================
|
| 272 |
if __name__ == "__main__":
|
| 273 |
demo.launch()
|