Spaces:
Running
on
Zero
Running
on
Zero
Update app_exp.py
Browse files- app_exp.py +87 -76
app_exp.py
CHANGED
|
@@ -11,33 +11,21 @@ from PIL import Image
|
|
| 11 |
from huggingface_hub import snapshot_download, hf_hub_download
|
| 12 |
|
| 13 |
# ============================================================
|
| 14 |
-
# 0️⃣
|
| 15 |
# ============================================================
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# filename="128/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl",
|
| 22 |
-
# )
|
| 23 |
-
# subprocess.run(["pip", "install", flash_attention_wheel], check=True)
|
| 24 |
-
# site.addsitedir(site.getsitepackages()[0])
|
| 25 |
-
# importlib.invalidate_caches()
|
| 26 |
-
# print("✅ FlashAttention installed successfully.")
|
| 27 |
-
# enable_fa3 = True
|
| 28 |
-
# except Exception as e:
|
| 29 |
-
# print(f"⚠️ Could not install FlashAttention: {e}")
|
| 30 |
-
# print("Continuing without FlashAttention...")
|
| 31 |
-
# enable_fa3 = False
|
| 32 |
|
| 33 |
# ============================================================
|
| 34 |
-
# 1️⃣ Repository
|
| 35 |
# ============================================================
|
| 36 |
REPO_PATH = "LongCat-Video"
|
| 37 |
CHECKPOINT_DIR = os.path.join(REPO_PATH, "weights", "LongCat-Video")
|
| 38 |
|
| 39 |
if not os.path.exists(REPO_PATH):
|
| 40 |
-
print(f"Cloning LongCat-Video repository to '{REPO_PATH}'...")
|
| 41 |
subprocess.run(
|
| 42 |
["git", "clone", "https://github.com/meituan-longcat/LongCat-Video.git", REPO_PATH],
|
| 43 |
check=True
|
|
@@ -52,10 +40,10 @@ from longcat_video.modules.longcat_video_dit import LongCatVideoTransformer3DMod
|
|
| 52 |
from longcat_video.context_parallel import context_parallel_util
|
| 53 |
from transformers import AutoTokenizer, UMT5EncoderModel
|
| 54 |
from diffusers.utils import export_to_video
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
# Download weights if not present
|
| 57 |
if not os.path.exists(CHECKPOINT_DIR):
|
| 58 |
-
print(f"Downloading model weights to '{CHECKPOINT_DIR}'...")
|
| 59 |
snapshot_download(
|
| 60 |
repo_id="meituan-longcat/LongCat-Video",
|
| 61 |
local_dir=CHECKPOINT_DIR,
|
|
@@ -64,33 +52,61 @@ if not os.path.exists(CHECKPOINT_DIR):
|
|
| 64 |
)
|
| 65 |
|
| 66 |
# ============================================================
|
| 67 |
-
# 2️⃣ Device & Models
|
| 68 |
# ============================================================
|
| 69 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 70 |
-
torch_dtype = torch.bfloat16 if device
|
| 71 |
-
|
| 72 |
-
print(f"Device: {device}, dtype: {torch_dtype}")
|
| 73 |
-
|
| 74 |
pipe = None
|
|
|
|
| 75 |
try:
|
| 76 |
cp_split_hw = context_parallel_util.get_optimal_split(1)
|
| 77 |
-
|
| 78 |
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_DIR, subfolder="tokenizer", torch_dtype=torch_dtype)
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
vae = AutoencoderKLWan.from_pretrained(CHECKPOINT_DIR, subfolder="vae", torch_dtype=torch_dtype)
|
| 82 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(CHECKPOINT_DIR, subfolder="scheduler", torch_dtype=torch_dtype)
|
| 83 |
|
|
|
|
| 84 |
dit = LongCatVideoTransformer3DModel.from_pretrained(
|
| 85 |
CHECKPOINT_DIR,
|
| 86 |
enable_flashattn3=enable_fa3,
|
| 87 |
-
enable_flashattn2=False,
|
| 88 |
enable_xformers=True,
|
| 89 |
subfolder="dit",
|
| 90 |
cp_split_hw=cp_split_hw,
|
| 91 |
torch_dtype=torch_dtype
|
| 92 |
)
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
pipe = LongCatVideoPipeline(
|
| 95 |
tokenizer=tokenizer,
|
| 96 |
text_encoder=text_encoder,
|
|
@@ -99,55 +115,57 @@ try:
|
|
| 99 |
dit=dit,
|
| 100 |
)
|
| 101 |
pipe.to(device)
|
| 102 |
-
|
| 103 |
-
# Load LoRA weights
|
| 104 |
-
pipe.dit.load_lora(os.path.join(CHECKPOINT_DIR, 'lora/cfg_step_lora.safetensors'), 'cfg_step_lora')
|
| 105 |
-
pipe.dit.load_lora(os.path.join(CHECKPOINT_DIR, 'lora/refinement_lora.safetensors'), 'refinement_lora')
|
| 106 |
-
|
| 107 |
-
print("✅ Models loaded successfully")
|
| 108 |
|
| 109 |
except Exception as e:
|
| 110 |
print(f"❌ Failed to load models: {e}")
|
| 111 |
pipe = None
|
| 112 |
|
| 113 |
# ============================================================
|
| 114 |
-
# 3️⃣ Generation
|
| 115 |
# ============================================================
|
| 116 |
def torch_gc():
|
| 117 |
if torch.cuda.is_available():
|
| 118 |
torch.cuda.empty_cache()
|
| 119 |
torch.cuda.ipc_collect()
|
| 120 |
|
| 121 |
-
def
|
| 122 |
mode,
|
| 123 |
-
prompt,
|
| 124 |
-
neg_prompt,
|
| 125 |
image,
|
| 126 |
height, width, resolution,
|
| 127 |
seed,
|
| 128 |
use_distill,
|
| 129 |
use_refine,
|
| 130 |
-
|
| 131 |
-
progress=gr.Progress(track_tqdm=True)
|
| 132 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
if pipe is None:
|
| 134 |
-
raise gr.Error("
|
| 135 |
|
| 136 |
-
# Adaptive FPS for faster testing
|
| 137 |
fps = 15 if use_distill else 30
|
| 138 |
num_frames = int(duration_sec * fps)
|
| 139 |
generator = torch.Generator(device=device).manual_seed(int(seed))
|
| 140 |
is_distill = use_distill or use_refine
|
| 141 |
|
| 142 |
-
# Stage 1
|
| 143 |
progress(0.2, desc="Stage 1: Base Video Generation")
|
| 144 |
pipe.dit.enable_loras(['cfg_step_lora'] if is_distill else [])
|
| 145 |
-
|
| 146 |
num_inference_steps = 12 if is_distill else 24
|
| 147 |
guidance_scale = 2.0 if is_distill else 4.0
|
| 148 |
curr_neg_prompt = "" if is_distill else neg_prompt
|
| 149 |
|
| 150 |
-
if mode
|
| 151 |
output = pipe.generate_t2v(
|
| 152 |
prompt=prompt,
|
| 153 |
negative_prompt=curr_neg_prompt,
|
|
@@ -176,16 +194,13 @@ def generate_video(
|
|
| 176 |
pipe.dit.disable_all_loras()
|
| 177 |
torch_gc()
|
| 178 |
|
| 179 |
-
# Stage 2: Optional refinement
|
| 180 |
if use_refine:
|
| 181 |
progress(0.5, desc="Stage 2: Refinement")
|
| 182 |
pipe.dit.enable_loras(['refinement_lora'])
|
| 183 |
pipe.dit.enable_bsa()
|
| 184 |
-
|
| 185 |
-
stage1_video_pil = [(frame * 255).astype(np.uint8) for frame in output]
|
| 186 |
stage1_video_pil = [Image.fromarray(img) for img in stage1_video_pil]
|
| 187 |
-
refine_image = Image.fromarray(image) if mode
|
| 188 |
-
|
| 189 |
output = pipe.generate_refine(
|
| 190 |
image=refine_image,
|
| 191 |
prompt=prompt,
|
|
@@ -194,44 +209,43 @@ def generate_video(
|
|
| 194 |
num_inference_steps=50,
|
| 195 |
generator=generator
|
| 196 |
)[0]
|
| 197 |
-
|
| 198 |
pipe.dit.disable_all_loras()
|
| 199 |
pipe.dit.disable_bsa()
|
| 200 |
torch_gc()
|
| 201 |
|
| 202 |
-
# Export video
|
| 203 |
progress(1.0, desc="Exporting video")
|
| 204 |
-
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as
|
| 205 |
-
export_to_video(output,
|
| 206 |
-
return
|
| 207 |
|
| 208 |
# ============================================================
|
| 209 |
# 4️⃣ Gradio UI
|
| 210 |
# ============================================================
|
| 211 |
-
css
|
| 212 |
|
| 213 |
with gr.Blocks(css=css) as demo:
|
| 214 |
-
gr.Markdown("# 🎬 LongCat-Video")
|
| 215 |
gr.Markdown("13.6B parameter dense video-generation model by Meituan — [[Model](https://huggingface.co/meituan-longcat/LongCat-Video)]")
|
| 216 |
|
| 217 |
-
with gr.Tabs()
|
|
|
|
| 218 |
with gr.TabItem("Text-to-Video"):
|
| 219 |
mode_t2v = gr.State("t2v")
|
| 220 |
with gr.Row():
|
| 221 |
with gr.Column(scale=2):
|
| 222 |
prompt_t2v = gr.Textbox(label="Prompt", lines=4)
|
| 223 |
neg_prompt_t2v = gr.Textbox(label="Negative Prompt", lines=2, value="blurry, low quality")
|
| 224 |
-
height_t2v = gr.Slider(256,
|
| 225 |
-
width_t2v = gr.Slider(256,
|
| 226 |
-
seed_t2v = gr.Number(value=42,
|
| 227 |
-
distill_t2v = gr.Checkbox(value=True,
|
| 228 |
-
refine_t2v = gr.Checkbox(value=False,
|
| 229 |
-
duration_t2v = gr.Slider(1,
|
| 230 |
-
|
| 231 |
t2v_button = gr.Button("Generate Video")
|
| 232 |
with gr.Column(scale=3):
|
| 233 |
video_output_t2v = gr.Video(label="Generated Video")
|
| 234 |
|
|
|
|
| 235 |
with gr.TabItem("Image-to-Video"):
|
| 236 |
mode_i2v = gr.State("i2v")
|
| 237 |
with gr.Row():
|
|
@@ -240,16 +254,15 @@ with gr.Blocks(css=css) as demo:
|
|
| 240 |
prompt_i2v = gr.Textbox(label="Prompt", lines=4)
|
| 241 |
neg_prompt_i2v = gr.Textbox(label="Negative Prompt", lines=2, value="blurry, low quality")
|
| 242 |
resolution_i2v = gr.Dropdown(["480p","720p"], value="480p", label="Resolution")
|
| 243 |
-
seed_i2v = gr.Number(value=42,
|
| 244 |
-
distill_i2v = gr.Checkbox(value=True,
|
| 245 |
-
refine_i2v = gr.Checkbox(value=False,
|
| 246 |
-
duration_i2v = gr.Slider(1,
|
| 247 |
-
|
| 248 |
i2v_button = gr.Button("Generate Video")
|
| 249 |
with gr.Column(scale=3):
|
| 250 |
video_output_i2v = gr.Video(label="Generated Video")
|
| 251 |
|
| 252 |
-
#
|
| 253 |
t2v_button.click(
|
| 254 |
generate_video,
|
| 255 |
inputs=[mode_t2v, prompt_t2v, neg_prompt_t2v, gr.State(None),
|
|
@@ -266,8 +279,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 266 |
outputs=video_output_i2v
|
| 267 |
)
|
| 268 |
|
| 269 |
-
#
|
| 270 |
-
|
| 271 |
-
# ============================================================
|
| 272 |
-
if __name__ == "__main__":
|
| 273 |
demo.launch()
|
|
|
|
| 11 |
from huggingface_hub import snapshot_download, hf_hub_download
|
| 12 |
|
| 13 |
# ============================================================
|
| 14 |
+
# 0️⃣ Install required packages
|
| 15 |
# ============================================================
|
| 16 |
+
subprocess.run(["pip3", "install", "-U", "cache-dit"], check=True)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
import cache_dit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# ============================================================
|
| 23 |
+
# 1️⃣ Repository & Weights
|
| 24 |
# ============================================================
|
| 25 |
REPO_PATH = "LongCat-Video"
|
| 26 |
CHECKPOINT_DIR = os.path.join(REPO_PATH, "weights", "LongCat-Video")
|
| 27 |
|
| 28 |
if not os.path.exists(REPO_PATH):
|
|
|
|
| 29 |
subprocess.run(
|
| 30 |
["git", "clone", "https://github.com/meituan-longcat/LongCat-Video.git", REPO_PATH],
|
| 31 |
check=True
|
|
|
|
| 40 |
from longcat_video.context_parallel import context_parallel_util
|
| 41 |
from transformers import AutoTokenizer, UMT5EncoderModel
|
| 42 |
from diffusers.utils import export_to_video
|
| 43 |
+
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
| 44 |
+
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 45 |
|
|
|
|
| 46 |
if not os.path.exists(CHECKPOINT_DIR):
|
|
|
|
| 47 |
snapshot_download(
|
| 48 |
repo_id="meituan-longcat/LongCat-Video",
|
| 49 |
local_dir=CHECKPOINT_DIR,
|
|
|
|
| 52 |
)
|
| 53 |
|
| 54 |
# ============================================================
|
| 55 |
+
# 2️⃣ Device & Models (with cache & quantization)
|
| 56 |
# ============================================================
|
| 57 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 58 |
+
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
|
|
|
|
|
|
|
|
|
|
| 59 |
pipe = None
|
| 60 |
+
|
| 61 |
try:
|
| 62 |
cp_split_hw = context_parallel_util.get_optimal_split(1)
|
|
|
|
| 63 |
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_DIR, subfolder="tokenizer", torch_dtype=torch_dtype)
|
| 64 |
+
|
| 65 |
+
# Text encoder with 4-bit quantization
|
| 66 |
+
text_encoder = UMT5EncoderModel.from_pretrained(
|
| 67 |
+
CHECKPOINT_DIR,
|
| 68 |
+
subfolder="text_encoder",
|
| 69 |
+
torch_dtype=torch_dtype,
|
| 70 |
+
quantization_config=TransformersBitsAndBytesConfig(
|
| 71 |
+
load_in_4bit=True,
|
| 72 |
+
bnb_4bit_quant_type="nf4",
|
| 73 |
+
bnb_4bit_compute_dtype=torch_dtype
|
| 74 |
+
)
|
| 75 |
+
)
|
| 76 |
|
| 77 |
vae = AutoencoderKLWan.from_pretrained(CHECKPOINT_DIR, subfolder="vae", torch_dtype=torch_dtype)
|
| 78 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(CHECKPOINT_DIR, subfolder="scheduler", torch_dtype=torch_dtype)
|
| 79 |
|
| 80 |
+
# DiT model with FP8/4-bit quantization + cache
|
| 81 |
dit = LongCatVideoTransformer3DModel.from_pretrained(
|
| 82 |
CHECKPOINT_DIR,
|
| 83 |
enable_flashattn3=enable_fa3,
|
|
|
|
| 84 |
enable_xformers=True,
|
| 85 |
subfolder="dit",
|
| 86 |
cp_split_hw=cp_split_hw,
|
| 87 |
torch_dtype=torch_dtype
|
| 88 |
)
|
| 89 |
|
| 90 |
+
# Enable Cache-DiT
|
| 91 |
+
cache_dit.enable_cache(
|
| 92 |
+
cache_dit.BlockAdapter(
|
| 93 |
+
transformer=dit,
|
| 94 |
+
blocks=dit.blocks,
|
| 95 |
+
forward_pattern=cache_dit.ForwardPattern.Pattern_3,
|
| 96 |
+
check_forward_pattern=False,
|
| 97 |
+
has_separate_cfg=False
|
| 98 |
+
),
|
| 99 |
+
cache_config=cache_dit.DBCacheConfig(
|
| 100 |
+
Fn_compute_blocks=1,
|
| 101 |
+
Bn_compute_blocks=1,
|
| 102 |
+
max_warmup_steps=5,
|
| 103 |
+
max_cached_steps=50,
|
| 104 |
+
max_continuous_cached_steps=50,
|
| 105 |
+
residual_diff_threshold=0.01,
|
| 106 |
+
num_inference_steps=50
|
| 107 |
+
)
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
pipe = LongCatVideoPipeline(
|
| 111 |
tokenizer=tokenizer,
|
| 112 |
text_encoder=text_encoder,
|
|
|
|
| 115 |
dit=dit,
|
| 116 |
)
|
| 117 |
pipe.to(device)
|
| 118 |
+
print("✅ Models loaded with Cache-DiT and quantization")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
except Exception as e:
|
| 121 |
print(f"❌ Failed to load models: {e}")
|
| 122 |
pipe = None
|
| 123 |
|
| 124 |
# ============================================================
|
| 125 |
+
# 3️⃣ Generation Helper
|
| 126 |
# ============================================================
|
| 127 |
def torch_gc():
|
| 128 |
if torch.cuda.is_available():
|
| 129 |
torch.cuda.empty_cache()
|
| 130 |
torch.cuda.ipc_collect()
|
| 131 |
|
| 132 |
+
def check_duration(
|
| 133 |
mode,
|
| 134 |
+
prompt,
|
| 135 |
+
neg_prompt,
|
| 136 |
image,
|
| 137 |
height, width, resolution,
|
| 138 |
seed,
|
| 139 |
use_distill,
|
| 140 |
use_refine,
|
| 141 |
+
progress
|
|
|
|
| 142 |
):
|
| 143 |
+
if use_distill and resolution=="480p":
|
| 144 |
+
return 180
|
| 145 |
+
elif resolution=="720p":
|
| 146 |
+
return 360
|
| 147 |
+
else:
|
| 148 |
+
return 900
|
| 149 |
+
|
| 150 |
+
@spaces.GPU(duration=180)
|
| 151 |
+
def generate_video(mode, prompt, neg_prompt, image, height, width, resolution,
|
| 152 |
+
seed, use_distill, use_refine, duration_sec, progress=gr.Progress(track_tqdm=True)):
|
| 153 |
+
|
| 154 |
if pipe is None:
|
| 155 |
+
raise gr.Error("Models not loaded")
|
| 156 |
|
|
|
|
| 157 |
fps = 15 if use_distill else 30
|
| 158 |
num_frames = int(duration_sec * fps)
|
| 159 |
generator = torch.Generator(device=device).manual_seed(int(seed))
|
| 160 |
is_distill = use_distill or use_refine
|
| 161 |
|
|
|
|
| 162 |
progress(0.2, desc="Stage 1: Base Video Generation")
|
| 163 |
pipe.dit.enable_loras(['cfg_step_lora'] if is_distill else [])
|
|
|
|
| 164 |
num_inference_steps = 12 if is_distill else 24
|
| 165 |
guidance_scale = 2.0 if is_distill else 4.0
|
| 166 |
curr_neg_prompt = "" if is_distill else neg_prompt
|
| 167 |
|
| 168 |
+
if mode=="t2v":
|
| 169 |
output = pipe.generate_t2v(
|
| 170 |
prompt=prompt,
|
| 171 |
negative_prompt=curr_neg_prompt,
|
|
|
|
| 194 |
pipe.dit.disable_all_loras()
|
| 195 |
torch_gc()
|
| 196 |
|
|
|
|
| 197 |
if use_refine:
|
| 198 |
progress(0.5, desc="Stage 2: Refinement")
|
| 199 |
pipe.dit.enable_loras(['refinement_lora'])
|
| 200 |
pipe.dit.enable_bsa()
|
| 201 |
+
stage1_video_pil = [(frame*255).astype(np.uint8) for frame in output]
|
|
|
|
| 202 |
stage1_video_pil = [Image.fromarray(img) for img in stage1_video_pil]
|
| 203 |
+
refine_image = Image.fromarray(image) if mode=='i2v' else None
|
|
|
|
| 204 |
output = pipe.generate_refine(
|
| 205 |
image=refine_image,
|
| 206 |
prompt=prompt,
|
|
|
|
| 209 |
num_inference_steps=50,
|
| 210 |
generator=generator
|
| 211 |
)[0]
|
|
|
|
| 212 |
pipe.dit.disable_all_loras()
|
| 213 |
pipe.dit.disable_bsa()
|
| 214 |
torch_gc()
|
| 215 |
|
|
|
|
| 216 |
progress(1.0, desc="Exporting video")
|
| 217 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as f:
|
| 218 |
+
export_to_video(output, f.name, fps=fps)
|
| 219 |
+
return f.name
|
| 220 |
|
| 221 |
# ============================================================
|
| 222 |
# 4️⃣ Gradio UI
|
| 223 |
# ============================================================
|
| 224 |
+
css=".fillable{max-width:960px !important}"
|
| 225 |
|
| 226 |
with gr.Blocks(css=css) as demo:
|
| 227 |
+
gr.Markdown("# 🎬 LongCat-Video with Cache-DiT & Quantization")
|
| 228 |
gr.Markdown("13.6B parameter dense video-generation model by Meituan — [[Model](https://huggingface.co/meituan-longcat/LongCat-Video)]")
|
| 229 |
|
| 230 |
+
with gr.Tabs():
|
| 231 |
+
# Text-to-Video
|
| 232 |
with gr.TabItem("Text-to-Video"):
|
| 233 |
mode_t2v = gr.State("t2v")
|
| 234 |
with gr.Row():
|
| 235 |
with gr.Column(scale=2):
|
| 236 |
prompt_t2v = gr.Textbox(label="Prompt", lines=4)
|
| 237 |
neg_prompt_t2v = gr.Textbox(label="Negative Prompt", lines=2, value="blurry, low quality")
|
| 238 |
+
height_t2v = gr.Slider(256,1024,step=64,value=480,label="Height")
|
| 239 |
+
width_t2v = gr.Slider(256,1024,step=64,value=832,label="Width")
|
| 240 |
+
seed_t2v = gr.Number(value=42,label="Seed")
|
| 241 |
+
distill_t2v = gr.Checkbox(value=True,label="Use Distill Mode")
|
| 242 |
+
refine_t2v = gr.Checkbox(value=False,label="Use Refine Mode")
|
| 243 |
+
duration_t2v = gr.Slider(1,20,step=1,value=2,label="Video Duration (seconds)")
|
|
|
|
| 244 |
t2v_button = gr.Button("Generate Video")
|
| 245 |
with gr.Column(scale=3):
|
| 246 |
video_output_t2v = gr.Video(label="Generated Video")
|
| 247 |
|
| 248 |
+
# Image-to-Video
|
| 249 |
with gr.TabItem("Image-to-Video"):
|
| 250 |
mode_i2v = gr.State("i2v")
|
| 251 |
with gr.Row():
|
|
|
|
| 254 |
prompt_i2v = gr.Textbox(label="Prompt", lines=4)
|
| 255 |
neg_prompt_i2v = gr.Textbox(label="Negative Prompt", lines=2, value="blurry, low quality")
|
| 256 |
resolution_i2v = gr.Dropdown(["480p","720p"], value="480p", label="Resolution")
|
| 257 |
+
seed_i2v = gr.Number(value=42,label="Seed")
|
| 258 |
+
distill_i2v = gr.Checkbox(value=True,label="Use Distill Mode")
|
| 259 |
+
refine_i2v = gr.Checkbox(value=False,label="Use Refine Mode")
|
| 260 |
+
duration_i2v = gr.Slider(1,20,step=1,value=2,label="Video Duration (seconds)")
|
|
|
|
| 261 |
i2v_button = gr.Button("Generate Video")
|
| 262 |
with gr.Column(scale=3):
|
| 263 |
video_output_i2v = gr.Video(label="Generated Video")
|
| 264 |
|
| 265 |
+
# Bind events
|
| 266 |
t2v_button.click(
|
| 267 |
generate_video,
|
| 268 |
inputs=[mode_t2v, prompt_t2v, neg_prompt_t2v, gr.State(None),
|
|
|
|
| 279 |
outputs=video_output_i2v
|
| 280 |
)
|
| 281 |
|
| 282 |
+
# Launch
|
| 283 |
+
if __name__=="__main__":
|
|
|
|
|
|
|
| 284 |
demo.launch()
|