Spaces:
Running
Running
MOdifying with minimal app
Browse files
app..py
CHANGED
|
@@ -1,42 +1,7 @@
|
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
-
from pydantic import BaseModel
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 4 |
-
from peft import PeftModel
|
| 5 |
-
import torch
|
| 6 |
-
|
| 7 |
app = FastAPI()
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
# Load tokenizer
|
| 14 |
-
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 15 |
-
|
| 16 |
-
# Load base model
|
| 17 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
-
BASE_MODEL,
|
| 19 |
-
device_map="auto",
|
| 20 |
-
torch_dtype=torch.float16,
|
| 21 |
-
)
|
| 22 |
-
|
| 23 |
-
# Load adapter
|
| 24 |
-
model = PeftModel.from_pretrained(model, ADAPTER_REPO)
|
| 25 |
-
|
| 26 |
-
# Pipeline
|
| 27 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
|
| 28 |
-
|
| 29 |
-
class Request(BaseModel):
|
| 30 |
-
prompt: str
|
| 31 |
-
max_new_tokens: int = 150
|
| 32 |
-
temperature: float = 0.7
|
| 33 |
-
|
| 34 |
-
@app.post("/generate")
|
| 35 |
-
def generate(req: Request):
|
| 36 |
-
output = pipe(
|
| 37 |
-
req.prompt,
|
| 38 |
-
max_new_tokens=req.max_new_tokens,
|
| 39 |
-
temperature=req.temperature,
|
| 40 |
-
do_sample=True
|
| 41 |
-
)
|
| 42 |
-
return {"response": output[0]["generated_text"]}
|
|
|
|
| 1 |
+
# app.py (temporary test)
|
| 2 |
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
app = FastAPI()
|
| 4 |
|
| 5 |
+
@app.get("/")
|
| 6 |
+
def root():
|
| 7 |
+
return {"status": "ok", "message": "minimal app works"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|