File size: 5,642 Bytes
c69001b
 
 
 
 
 
 
 
 
ef1795c
c69001b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef1795c
 
 
 
 
 
c69001b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import re
import json
import pickle
from typing import List, Dict

import numpy as np
import faiss
import pandas as pd
import tabula
from sentence_transformers import SentenceTransformer
from rank_bm25 import BM25Okapi

# ---------------- Config ----------------
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"

PDF_PATH    = "MakeMyTrip_Financial_Statements.pdf"
OUT_DIR     = "data/index_merged"

# Paths for saved chunks & indices
CHUNKS_100_PATH = os.path.join(OUT_DIR, "chunks_100.json")
CHUNKS_400_PATH = os.path.join(OUT_DIR, "chunks_400.json")
CHUNKS_MERGED_PATH = os.path.join(OUT_DIR, "chunks_merged.json")

FAISS_PATH    = os.path.join(OUT_DIR, "faiss_merged.index")
BM25_PATH     = os.path.join(OUT_DIR, "bm25_merged.pkl")
META_PATH     = os.path.join(OUT_DIR, "meta_merged.pkl")

# ---------------- Utils ----------------
_tok_pat = re.compile(r"[a-z0-9]+", re.I)
def simple_tokenize(text: str):
    return _tok_pat.findall((text or "").lower())

def create_chunks(texts: List[str], max_tokens: int) -> List[str]:
    """Simple word-based tokenizer to split texts into chunks."""
    chunks, current_chunk, current_tokens = [], [], 0
    for text in texts:
        tokens = re.findall(r"\w+", text)
        if current_tokens + len(tokens) > max_tokens:
            chunks.append(" ".join(current_chunk))
            current_chunk, current_tokens = [], 0
        current_chunk.append(text)
        current_tokens += len(tokens)
    if current_chunk:
        chunks.append(" ".join(current_chunk))
    return chunks

def extract_tables_from_pdf(pdf_path: str, pages="all") -> List[Dict]:
    """Extract tables from financial PDF into structured row-year-value dicts."""
    tables = tabula.read_pdf(
        pdf_path,
        pages=pages,
        multiple_tables=True,
        pandas_options={'dtype': str}
    )

    table_rows = []
    row_id = 0
    
    for df in tables:
        if df.empty:
            continue

        df = df.replace(r'\n', ' ', regex=True).fillna("")

        headers = list(df.iloc[0])
        if any(re.match(r"20\d{2}", str(c)) for c in headers):
            df.columns = [c.strip() for c in headers]
            df = df.drop(0).reset_index(drop=True)

        for _, row in df.iterrows():
            metric = str(row.iloc[0]).strip()
            if not metric or metric.lower() in ["note", ""]:
                continue

            values = {}
            for col, val in row.items():
                if re.match(r"20\d{2}", str(col)):
                    clean_val = str(val).replace(",", "").strip()
                    if clean_val and clean_val not in ["-", "—", "nan"]:
                        values[str(col)] = clean_val

            if not values:
                continue

            table_rows.append({
                "id": f"table-{row_id}",
                "metric": metric,
                "years": list(values.keys()),
                "values": values,
                "content": f"{metric} values: {json.dumps(values)}",
                "source": "table"
            })
            row_id += 1

    print(f"Extracted {len(table_rows)} rows from PDF tables")
    return table_rows

def build_dense_faiss(texts: List[str], out_path: str):
    print(f"Embedding {len(texts)} docs with {EMBED_MODEL} ...")
    model = SentenceTransformer(EMBED_MODEL)
    emb = model.encode(texts, convert_to_numpy=True, batch_size=64, show_progress_bar=True)
    faiss.normalize_L2(emb)
    dim = emb.shape[1]

    index = faiss.IndexFlatIP(dim)
    index.add(emb)
    faiss.write_index(index, out_path)
    print(f"FAISS index built & saved -> {out_path}")

def build_bm25(texts: List[str], out_path: str):
    tokenized = [simple_tokenize(t) for t in texts]
    bm25 = BM25Okapi(tokenized)
    with open(out_path, "wb") as f:
        pickle.dump({"bm25": bm25, "tokenized_corpus": tokenized}, f)
    print(f"BM25 index built & saved -> {out_path}")

# ---------------- Main ----------------
def main():
    os.makedirs(OUT_DIR, exist_ok=True)

    # 1) Extract table rows
    docs = extract_tables_from_pdf(PDF_PATH, pages="all")
    all_texts = [d["content"] for d in docs]

    # 2) Create chunks of size 100 and 400
    chunks_100 = create_chunks(all_texts, 100)
    chunks_400 = create_chunks(all_texts, 400)

    # 3) Save them separately
    with open(CHUNKS_100_PATH, "w", encoding="utf-8") as f:
        json.dump(chunks_100, f, indent=2, ensure_ascii=False)
    with open(CHUNKS_400_PATH, "w", encoding="utf-8") as f:
        json.dump(chunks_400, f, indent=2, ensure_ascii=False)
    print(f"Saved {len(chunks_100)} chunks_100 -> {CHUNKS_100_PATH}")
    print(f"Saved {len(chunks_400)} chunks_400 -> {CHUNKS_400_PATH}")

    # 4) Merge with metadata
    merged = []
    for i, ch in enumerate(chunks_100):
        merged.append({"id": f"100-{i}", "chunk_size": 100, "content": ch})
    for i, ch in enumerate(chunks_400):
        merged.append({"id": f"400-{i}", "chunk_size": 400, "content": ch})

    # 5) Save merged chunks
    with open(CHUNKS_MERGED_PATH, "w", encoding="utf-8") as f:
        json.dump(merged, f, indent=2, ensure_ascii=False)
    print(f"Saved {len(merged)} merged chunks -> {CHUNKS_MERGED_PATH}")

    # 6) Build FAISS & BM25 on merged chunks
    texts = [m["content"] for m in merged]
    build_dense_faiss(texts, FAISS_PATH)
    build_bm25(texts, BM25_PATH)

    # 7) Save metadata
    with open(META_PATH, "wb") as f:
        pickle.dump(merged, f)
    print(f"Saved metadata -> {META_PATH}")

    print("\n✅ Done. Created 100 + 400 chunks separately and merged them for unified FAISS & BM25 indexes!")

if __name__ == "__main__":
    main()