Spaces:
Sleeping
Sleeping
File size: 8,983 Bytes
e56befa 35c1630 e56befa a0ceb2a a4c5603 e56befa 9b3cf89 e56befa f5ae900 e56befa cf86e0c e56befa cf86e0c e56befa cf86e0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
from dotenv import load_dotenv
import re
import pickle
import faiss
import numpy as np
from typing import List, Dict
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from rank_bm25 import BM25Okapi
import nltk
from nltk.corpus import stopwords
import requests
import json
from openai import OpenAI
import logging
#import generate_indexes
load_dotenv()
#generate_indexes.main()
# ---------------- Logging Setup ----------------
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
nltk.download("stopwords")
STOPWORDS = set(stopwords.words("english"))
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# ---------------- Paths & Models ----------------
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
CROSS_ENCODER = "cross-encoder/ms-marco-MiniLM-L-6-v2"
OUT_DIR = "data/index_merged"
FAISS_PATH = os.path.join(OUT_DIR, "faiss_merged.index")
BM25_PATH = os.path.join(OUT_DIR, "bm25_merged.pkl")
META_PATH = os.path.join(OUT_DIR, "meta_merged.pkl")
# ---------------- Load Indexes ----------------
logger.info("Loading FAISS, BM25, metadata, and models...")
try:
faiss_index = faiss.read_index(FAISS_PATH)
with open(BM25_PATH, "rb") as f:
bm25_obj = pickle.load(f)
bm25 = bm25_obj["bm25"]
with open(META_PATH, "rb") as f:
meta: List[Dict] = pickle.load(f)
embed_model = SentenceTransformer(EMBED_MODEL)
reranker = CrossEncoder(CROSS_ENCODER)
api_key = os.getenv("HF_API_KEY")
if not api_key:
logger.error("HF_API_KEY environment variable not set. Please check your .env file or environment.")
raise ValueError("HF_API_KEY environment variable not set.")
client = OpenAI(
base_url="https://router.huggingface.co/v1",
api_key=api_key
)
except Exception as e:
logger.error(f"Error loading models or indexes: {e}")
raise
def get_mistral_answer(query: str, context: str) -> str:
"""
Calls Mistral 7B Instruct API via Hugging Face Inference API.
Adds error handling and logging.
"""
prompt = f"Context:\n{context}\n\nQuestion: {query}\nAnswer in full sentences using context."
try:
logger.info(f"Calling Mistral API for query: {query}")
completion = client.chat.completions.create(
model="dphn/Dolphin-Mistral-24B-Venice-Edition:featherless-ai",
messages=[
{
"role": "user",
"content": prompt
}
]
)
answer = str(completion.choices[0].message.content)
logger.info(f"Mistral API response: {answer}")
return answer
except Exception as e:
logger.error(f"Error in Mistral API call: {e}")
return f"Error fetching answer from LLM: {e}"
# ---------------- Guardrails ----------------
BLOCKED_TERMS = ["weather", "cricket", "movie", "song", "football", "holiday",
"travel", "recipe", "music", "game", "sports", "politics", "election"]
FINANCE_DOMAINS = [
"financial reporting", "balance sheet", "income statement",
"assets and liabilities", "equity", "revenue", "profit and loss",
"goodwill impairment", "cash flow", "dividends", "taxation",
"investment", "valuation", "capital structure", "ownership interests",
"subsidiaries", "shareholders equity", "expenses", "earnings",
"debt", "amortization", "depreciation"
]
finance_embeds = embed_model.encode(FINANCE_DOMAINS, convert_to_tensor=True)
def validate_query(query: str, threshold: float = 0.5) -> bool:
q_lower = query.lower()
if any(bad in q_lower for bad in BLOCKED_TERMS):
print("[Guardrail] Rejected by blocklist.")
return False
q_emb = embed_model.encode(query, convert_to_tensor=True)
sim_scores = util.cos_sim(q_emb, finance_embeds)
max_score = float(sim_scores.max())
if max_score > threshold:
print(f"[Guardrail] Accepted (semantic match {max_score:.2f})")
return True
else:
print(f"[Guardrail] Rejected (low semantic score {max_score:.2f})")
return False
# ---------------- Preprocess ----------------
def preprocess_query(query: str, remove_stopwords: bool = True) -> str:
query = query.lower()
query = re.sub(r"[^a-z0-9\s]", " ", query)
tokens = query.split()
if remove_stopwords:
tokens = [t for t in tokens if t not in STOPWORDS]
return " ".join(tokens)
# ---------------- Hybrid Retrieval ----------------
def hybrid_candidates(query: str, candidate_k: int = 50, alpha: float = 0.5) -> List[int]:
q_emb = embed_model.encode([preprocess_query(query, remove_stopwords=False)], convert_to_numpy=True, normalize_embeddings=True)
faiss_scores, faiss_ids = faiss_index.search(q_emb, max(candidate_k, 50))
faiss_ids = faiss_ids[0]
faiss_scores = faiss_scores[0]
tokenized_query = preprocess_query(query).split()
bm25_scores = bm25.get_scores(tokenized_query)
topN = max(candidate_k, 50)
bm25_top = np.argsort(bm25_scores)[::-1][:topN]
faiss_top = faiss_ids[:topN]
union_ids = np.unique(np.concatenate([bm25_top, faiss_top]))
faiss_score_map = {int(i): float(s) for i, s in zip(faiss_ids, faiss_scores)}
f_arr = np.array([faiss_score_map.get(int(i), -1.0) for i in union_ids], dtype=float)
f_min = np.min(f_arr)
if np.any(f_arr < 0):
f_arr = np.where(f_arr < 0, f_min, f_arr)
b_arr = np.array([bm25_scores[int(i)] for i in union_ids], dtype=float)
def _norm(x): return (x - np.min(x)) / (np.ptp(x) + 1e-9)
combined = alpha * _norm(f_arr) + (1 - alpha) * _norm(b_arr)
order = np.argsort(combined)[::-1]
return union_ids[order][:candidate_k].tolist()
# ---------------- Cross-Encoder Rerank ----------------
def rerank_cross_encoder(query: str, cand_ids: List[int], top_k: int = 10) -> List[Dict]:
pairs = [(query, meta[i]["content"]) for i in cand_ids]
scores = reranker.predict(pairs)
order = np.argsort(scores)[::-1][:top_k]
return [{"id": cand_ids[i], "chunk_size": meta[cand_ids[i]]["chunk_size"], "content": meta[cand_ids[i]]["content"], "rerank_score": float(scores[i])} for i in order]
# ---------------- Extract Numeric ----------------
def extract_value_for_year_and_concept(year: str, concept: str, context_docs: List[Dict]) -> str:
target_year = str(year)
concept_lower = concept.lower()
for doc in context_docs:
text = doc.get("content", "")
lines = [line for line in text.split("\n") if line.strip() and any(c.isdigit() for c in line)]
header_idx = None
year_to_col = {}
for idx, line in enumerate(lines):
years_in_line = re.findall(r"20\d{2}", line)
if years_in_line:
for col_idx, y in enumerate(years_in_line):
year_to_col[y] = col_idx
header_idx = idx
break
if target_year not in year_to_col or header_idx is None:
continue
for line in lines[header_idx+1:]:
if concept_lower in line.lower():
cols = re.split(r"\s{2,}|\t", line)
col_idx = year_to_col[target_year]
if col_idx < len(cols):
return cols[col_idx].replace(",", "")
return ""
# ---------------- RAG Pipeline ----------------
def generate_answer(query: str, top_k: int = 5, candidate_k: int = 50, alpha: float = 0.6):
logger.info(f"Received query: {query}")
try:
if not validate_query(query):
logger.warning("Query rejected: Not finance-related.")
return "Query rejected: Please ask finance-related questions."
cand_ids = hybrid_candidates(query, candidate_k=candidate_k, alpha=alpha)
logger.info(f"Hybrid candidates retrieved: {cand_ids}")
reranked = rerank_cross_encoder(query, cand_ids, top_k=top_k)
logger.info(f"Reranked top docs: {[d['id'] for d in reranked]}")
year_match = re.search(r"(20\d{2})", query)
year = year_match.group(0) if year_match else None
concept = re.sub(r"for the year 20\d{2}", "", query, flags=re.IGNORECASE).strip()
year_specific_answer = None
if year and concept:
year_specific_answer = extract_value_for_year_and_concept(year, concept, reranked)
logger.info(f"Year-specific answer: {year_specific_answer}")
if year_specific_answer:
answer = year_specific_answer
else:
# Pass top 5 chunks as context
context_text = "\n".join([d["content"] for d in reranked])
answer = get_mistral_answer(query, context_text)
final_answer = answer
logger.info(f"Final Answer: {final_answer}")
return final_answer
except Exception as e:
logger.error(f"Error in RAG pipeline: {e}")
return f"Error in RAG pipeline: {e}" |