Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
-
|
|
|
|
|
|
|
| 3 |
from arabert.preprocess import ArabertPreprocessor
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from transformers import EncoderDecoderModel, AutoTokenizer
|
| 5 |
tokenizer = AutoTokenizer.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
|
| 6 |
model = EncoderDecoderModel.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
|
| 7 |
-
model.to("cuda")
|
| 8 |
model.eval()
|
| 9 |
-
|
| 10 |
-
def generate_response(text):
|
| 11 |
text_clean = arabert_prep.preprocess(text)
|
| 12 |
inputs = tokenizer.encode_plus(text_clean,return_tensors='pt')
|
| 13 |
-
outputs = model.generate(input_ids = inputs.input_ids
|
| 14 |
-
attention_mask = inputs.attention_mask
|
| 15 |
do_sample = True,
|
| 16 |
-
min_length=
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
temperature = 0.5)
|
| 20 |
preds = tokenizer.batch_decode(outputs)
|
| 21 |
response = str(preds)
|
| 22 |
response = response.replace("\'", '')
|
| 23 |
response = response.replace("[[CLS]", '')
|
| 24 |
response = response.replace("[SEP]]", '')
|
| 25 |
response = str(arabert_prep.desegment(response))
|
| 26 |
-
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Import transformers and gradio
|
| 2 |
+
import transformers
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import git
|
| 5 |
+
import os
|
| 6 |
+
os.system("pip install --upgrade pip")
|
| 7 |
|
| 8 |
+
#Load arabert preprocessor
|
| 9 |
+
import git
|
| 10 |
+
git.Git("arabert").clone("https://github.com/aub-mind/arabert")
|
| 11 |
from arabert.preprocess import ArabertPreprocessor
|
| 12 |
+
arabert_prep = ArabertPreprocessor(model_name="bert-base-arabert", keep_emojis=False)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
#Load Model
|
| 16 |
from transformers import EncoderDecoderModel, AutoTokenizer
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
|
| 18 |
model = EncoderDecoderModel.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
|
|
|
|
| 19 |
model.eval()
|
| 20 |
+
|
| 21 |
+
def generate_response(text, minimum_length, p, temperature):
|
| 22 |
text_clean = arabert_prep.preprocess(text)
|
| 23 |
inputs = tokenizer.encode_plus(text_clean,return_tensors='pt')
|
| 24 |
+
outputs = model.generate(input_ids = inputs.input_ids,
|
| 25 |
+
attention_mask = inputs.attention_mask,
|
| 26 |
do_sample = True,
|
| 27 |
+
min_length=minimum_length,
|
| 28 |
+
top_p = p,
|
| 29 |
+
temperature = temperature)
|
|
|
|
| 30 |
preds = tokenizer.batch_decode(outputs)
|
| 31 |
response = str(preds)
|
| 32 |
response = response.replace("\'", '')
|
| 33 |
response = response.replace("[[CLS]", '')
|
| 34 |
response = response.replace("[SEP]]", '')
|
| 35 |
response = str(arabert_prep.desegment(response))
|
| 36 |
+
return response
|
| 37 |
+
|
| 38 |
+
title = 'Empathetic Response Generation in Arabic'
|
| 39 |
+
description = 'This demo is for a BERT2BERT model trained for single-turn open-domain empathetic dialogue response generation in Modern Standard Arabic'
|
| 40 |
+
gr.Interface(fn=generate_response,
|
| 41 |
+
inputs=[
|
| 42 |
+
gr.inputs.Textbox(),
|
| 43 |
+
gr.inputs.Slider(5, 20, step=1, label='Minimum Output Length'),
|
| 44 |
+
gr.inputs.Slider(0.7, 1, step=0.1, label='Top-P'),
|
| 45 |
+
gr.inputs.Slider(1, 3, step=0.1, label='Temperature'),
|
| 46 |
+
],
|
| 47 |
+
outputs="text",
|
| 48 |
+
title=title,
|
| 49 |
+
description=description).launch()
|