import os import gradio as gr import numpy as np import torch import random from PIL import Image from typing import Iterable from gradio.themes import Soft from gradio.themes.utils import colors, fonts, sizes try: import spaces except ImportError: class MockSpaces: def GPU(self, duration=0): def decorator(func): return func return decorator spaces = MockSpaces() if torch.cuda.is_available(): print("πŸš€ RunPod/Local GPU detected: Bypassing Hugging Face Spaces queue.") def gpu_bypass_decorator(duration=0): def decorator(func): return func return decorator spaces.GPU = gpu_bypass_decorator else: print("🐒 No GPU detected: Using standard Spaces logic (or Build Mode).") # ---------------------------------------- colors.steel_blue = colors.Color( name="steel_blue", c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2", c400="#529AC3", c500="#4682B4", c600="#3E72A0", c700="#36638C", c800="#2E5378", c900="#264364", c950="#1E3450", ) class SteelBlueTheme(Soft): def __init__( self, *, primary_hue: colors.Color | str = colors.gray, secondary_hue: colors.Color | str = colors.steel_blue, neutral_hue: colors.Color | str = colors.slate, text_size: sizes.Size | str = sizes.text_lg, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Outfit"), "Arial", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, text_size=text_size, font=font, font_mono=font_mono, ) super().set( background_fill_primary="*primary_50", background_fill_primary_dark="*primary_900", body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", button_primary_text_color="white", button_primary_text_color_hover="white", button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)", button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)", button_secondary_text_color="black", button_secondary_text_color_hover="white", button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)", button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)", button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)", button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)", slider_color="*secondary_500", slider_color_dark="*secondary_600", block_title_text_weight="600", block_border_width="3px", block_shadow="*shadow_drop_lg", button_primary_shadow="*shadow_drop_lg", button_large_padding="11px", color_accent_soft="*primary_100", block_label_background_fill="*primary_200", ) steel_blue_theme = SteelBlueTheme() from diffusers import FlowMatchEulerDiscreteScheduler from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 pipe = None if torch.cuda.is_available(): print("πŸš€ GPU detected! Initializing model for RunPod Environment...") dtype = torch.bfloat16 print("Loading Transformer...") transformer_model = QwenImageTransformer2DModel.from_pretrained( "linoyts/Qwen-Image-Edit-Rapid-AIO", subfolder='transformer', torch_dtype=dtype, device_map="auto" ) # 2. Load Pipeline (device_map="balanced") print("Loading Pipeline...") pipe = QwenImageEditPlusPipeline.from_pretrained( "Qwen/Qwen-Image-Edit-2509", transformer=transformer_model, torch_dtype=dtype, device_map="balanced" ) # 3. Load LoRAs print("Loading LoRAs...") pipe.load_lora_weights("autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime", weight_name="Qwen-Image-Edit-2509-Photo-to-Anime_000001000.safetensors", adapter_name="anime") pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multiple-angles", weight_name="ι•œε€΄θ½¬ζ’.safetensors", adapter_name="multiple-angles") pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Light_restoration", weight_name="移陀光影.safetensors", adapter_name="light-restoration") pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Relight", weight_name="Qwen-Edit-Relight.safetensors", adapter_name="relight") pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multi-Angle-Lighting", weight_name="ε€šθ§’εΊ¦η―ε…‰-251116.safetensors", adapter_name="multi-angle-lighting") pipe.load_lora_weights("tlennon-ie/qwen-edit-skin", weight_name="qwen-edit-skin_1.1_000002750.safetensors", adapter_name="edit-skin") pipe.load_lora_weights("lovis93/next-scene-qwen-image-lora-2509", weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene") pipe.load_lora_weights("vafipas663/Qwen-Edit-2509-Upscale-LoRA", weight_name="qwen-edit-enhance_64-v3_000001000.safetensors", adapter_name="upscale-image") try: pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) except Exception as e: print(f"Warning: FA3 set skipped: {e}") else: print("🐒 No GPU detected (HF Build Environment). SKIPPING MODEL LOAD.") MAX_SEED = np.iinfo(np.int32).max def update_dimensions_on_upload(image): if image is None: return 1024, 1024 original_width, original_height = image.size if original_width > original_height: new_width = 1024 aspect_ratio = original_height / original_width new_height = int(new_width * aspect_ratio) else: new_height = 1024 aspect_ratio = original_width / original_height new_width = int(new_height * aspect_ratio) new_width = (new_width // 8) * 8 new_height = (new_height // 8) * 8 return new_width, new_height @spaces.GPU(duration=30) def infer(input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True)): if pipe is None: raise gr.Error("Model not loaded. Are you running on GPU?") if input_image is None: raise gr.Error("Please upload an image to edit.") adapters_map = { "Photo-to-Anime": "anime", "Multiple-Angles": "multiple-angles", "Light-Restoration": "light-restoration", "Relight": "relight", "Multi-Angle-Lighting": "multi-angle-lighting", "Edit-Skin": "edit-skin", "Next-Scene": "next-scene", "Upscale-Image": "upscale-image" } if lora_adapter in adapters_map: pipe.set_adapters([adapters_map[lora_adapter]], adapter_weights=[1.0]) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=pipe.device).manual_seed(seed) negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry" original_image = input_image.convert("RGB") width, height = update_dimensions_on_upload(original_image) result = pipe( image=original_image, prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, generator=generator, true_cfg_scale=guidance_scale, ).images[0] return result, seed @spaces.GPU(duration=30) def infer_example(input_image, prompt, lora_adapter): if pipe is None: return None, 0 input_pil = input_image.convert("RGB") result, seed = infer(input_pil, prompt, lora_adapter, 0, True, 1.0, 4) return result, seed css=""" #col-container { margin: 0 auto; max-width: 960px; } #main-title h1 { font-size: 2.1em !important; } """ with gr.Blocks(css=css, theme=steel_blue_theme) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# **Qwen-Image-Edit-2509 (2x A40 Ready)**", elem_id="main-title") with gr.Row(equal_height=True): with gr.Column(): input_image = gr.Image(label="Upload Image", type="pil", height=290) prompt = gr.Text(label="Edit Prompt", show_label=True, placeholder="e.g., transform into anime..") run_button = gr.Button("Edit Image", variant="primary") with gr.Column(): output_image = gr.Image(label="Output Image", interactive=False, format="png", height=350) with gr.Row(): lora_adapter = gr.Dropdown( label="Choose Editing Style", choices=["Photo-to-Anime", "Multiple-Angles", "Light-Restoration", "Multi-Angle-Lighting", "Upscale-Image", "Relight", "Next-Scene", "Edit-Skin"], value="Photo-to-Anime" ) with gr.Accordion("Advanced Settings", open=False, visible=False): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4) run_button.click(fn=infer, inputs=[input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps], outputs=[output_image, seed]) if __name__ == "__main__": demo.queue(max_size=30).launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False)